\qquad

1.2.DI - FUCCT: ONS \& FUNCT:ON NOTATION

\qquad Period: \qquad

1. Use the Vertical Line Test to determine whether the graph represents a function in the rectangular coordinate system.
a.

b.

c.

d.

Determine whether or not each of the situations describes a function. Give a reason for your answer.
2. The letter grade in this course is a function of your numerical grade.
3. The numerical grade in this course is a function of the letter grade.
4. $\{(2,4),(-3,5),(5,-5),(\pi, 5)\}$
5. $\{(-5,2),(5,-3),(1,10),(5, \pi)\}$
6.

Domain	Range
-6	-5
-3	-2
0	-2
1	0
4	3
5	7

7.

Domain	Range
-7	4
-2	6
-1	-1
-1	3
0	5
1	5

8.

Domain	Range
-5	4
-4	4
-3	4
0	0
1	4
2	4

9. Which one point can be removed from Figure 1.1 to make it the graph of a function?
10. In the table, the amount of snowfall is a function of the elevation.
a. Identify the independent variable and the dependent variable.
b. Let x represent the elevation and $a(x)$ represent the amount of snowfall. Determine a (4000).
c. Write a sentence explaining the meaning of $a(5000)=12$.
d. Suppose we switch the independent and dependent variables. Is the

Figure 1.1

Elevation (in feet)	Snowfall (in inches)
2000	4
3000	6
4000	9
5000	12

Problem 11-13: Let $f(x)=x^{2}-x+4$ and $g(x)=3 x-5$.
11. Evaluate $g(-1)$.
12. Evaluate $f(g(1))$.
13. Solve $g(x)=7$.
14. Let $f(t)$ be the number of people, in millions who own cell phones t years after 1990. Explain the meaning of the following statement $f(10)=100.3$.
15. The function $C(t)=20+0.40(t-60)$ describes the monthly cost, $C(t)$, in dollars, for a cellular phone plan for t calling minutes, where $t>60$. Find and interpret $C(100)$.
16. The number of students enrolled for the semester at Chandler-Gilbert Community College has been growing in recent years. The number of students can by modeled by the function $C(y)=168.9 y+6741$ where C is the number of students enrolled and y is the years since 2003. Solve $C(y)=9000$ for y and write the solution in function notation. Explain what the numerical answer represents in its real-world context.

