Name:

Past due on: _____

- 1. Is $\overline{EF} \cong \overline{GH}$? Show work and explain your reasoning.
- 2. Is $\overline{AB} \perp \overline{BC}$? Show work and explain your reasoning.
- 3. Find the coordinates of point *P*, that lies $\frac{2}{3}$ of the way on the directed line segment \overline{AB} , with endpoints A(-2,5) & B(4,9).
- 4. Find the coordinates of point *R* that lies on the directed line segment \overline{QM} , with endpoints M(-9, -5)& Q(3, 5) and partitions the segment at a ratio of 2:5.
- 5. A translation moves $P(3,5) \rightarrow P'(6,1)$.
 - a. Describe the translation.
 - b. What are the coordinates of the image of point (-3, -5) under the same translation?

Describe the transformation shown **AND** find the missing coordinates.

10. Reflect $\triangle BNS$ over x = 1, then rotate it 90° counterclockwise. Lastly, translate it left 3

Draw and label the image after performing the sequence of transformations.

9. Rotate $\triangle FNG$ 180° and then translate it 5 units up and 3 units right.

11. Describe the sequence of transformations that maps $\triangle ABC$ onto $\triangle A"B"C"$.

- 12. Consider \overline{NY} with endpoints N(-11, 5) & Y(5, -7). Follow the steps the find the equation of the line that is the perpendicular bisector to \overline{NY} .
 - a. In order to find the equation of a *perpendicular* line we first need to know the *slope* of \overline{NY} .
 - b. What would be the slope of the line perpendicular to \overline{NY} ?
 - c. Find the "bisector" (*the midpoint*).
 - d. Using the slope from *b* and the point from *c*, find the equation of the perpendicular bisector of \overline{NY} .

Write an equation of the line to satisfy the given conditions. The final equation should be written in slope-intercept form.

- 13. The line is parallel to y = 2x 7 and passes through the point (2, -5).
- 14. The line is perpendicular to y = 5x 3 and passes through the point (2, 1).

15. Are the lines parallel, perpendicular, or neither?

a. $\begin{cases} y = -0.5x + 4 \\ y - 2x = 4 \end{cases}$	$b. \begin{cases} y-x=4\\ x+y=5 \end{cases}$	c. $\begin{cases} 5x + y = 7\\ y = 5x + 1 \end{cases}$	$d. \begin{cases} 2x + y = 4\\ 2y + 4x = 16 \end{cases}$
--	--	--	--

16. Determine the perimeter <u>and</u> the area of the composite figure. *Round your answers to the nearest hundredth, if necessary.*

RECORD THE SIDE LENGTHS BELOW.

CW = _____ *CT* = _____

MW = _____ *MT* = _____

Perimeter: _____ Area: _____

17. Determine the perimeter <u>and</u> the area of the composite figure. *Round your answers to the nearest hundredth, if necessary.*

RECORD THE SIDE LENGTHS BELOW.

DI =	<i>IN</i> =	<i>NO</i> =
<i>OS</i> =	SA =	AU =
UR =	<i>RD</i> =	

In the space provided, create your own composite figure that incorporates the following:

- At least six sides.
- At most HALF of the sides can be horizontal and/or vertical.
- Each vertex is labeled with a different letter.
- Each quadrant is used.

Look at Problem 17 for an example of what is expected.

Then, determine the perimeter and area of your composite figure.