\qquad
\qquad Period: \qquad

1. Is $\overline{E F} \cong \overline{G H}$? Show work and explain your reasoning.
2. Is $\overline{A B} \perp \overline{B C}$? Show work and explain your reasoning.

3. Find the coordinates of point P, that lies $\frac{2}{3}$ of the way on the directed line segment $\overline{A B}$, with endpoints $A(-2,5) \& B(4,9)$.
4. Find the coordinates of point R that lies on the directed line segment $\overline{Q M}$, with endpoints $M(-9,-5) \& Q(3,5)$ and partitions the segment at a ratio of 2:5.
5. A translation moves $P(3,5) \rightarrow P^{\prime}(6,1)$.
a. Describe the translation.
b. What are the coordinates of the image of point $(-3,-5)$ under the same translation?

Describe the transformation shown AND find the missing coordinates.
6. Find $C \& B$.

7. Find $R \& P$ '.

8. Find R and T°.

Draw and label the image after performing the sequence of transformations.
9. Rotate $\triangle F N G 180^{\circ}$ and then translate it 5 units up and 3 units right.

10. Reflect $\triangle B N S$ over $x=1$, then rotate it 90° counterclockwise. Lastly, translate it left 3 units and down 2 units.

11. Describe the sequence of transformations that maps $\triangle A B C$ onto $\triangle A " B " C$ ".

12. Consider $\overline{N Y}$ with endpoints $N(-11,5) \& Y(5,-7)$. Follow the steps the find the equation of the line that is the perpendicular bisector to $\overline{N Y}$.
a. In order to find the equation of a perpendicular line we first need to know the slope of $\overline{N Y}$.
b. What would be the slope of the line perpendicular to $\overline{N Y}$?
c. Find the "bisector" (the midpoint).
d. Using the slope from b and the point from c, find the equation of the perpendicular bisector of $\overline{N Y}$.

Write an equation of the line to satisfy the given conditions. The final equation should be written in slope-intercept form.
13. The line is parallel to $y=2 x-7$ and passes through the point $(2,-5)$.
15. Are the lines parallel, perpendicular, or neither?
a. $\left\{\begin{array}{l}y=-0.5 x+4 \\ y-2 x=4\end{array}\right.$
b. $\left\{\begin{array}{l}y-x=4 \\ x+y=5\end{array}\right.$
c. $\left\{\begin{array}{l}5 x+y=7 \\ y=5 x+1\end{array}\right.$
d. $\left\{\begin{array}{l}2 x+y=4 \\ 2 y+4 x=16\end{array}\right.$
16. Determine the perimeter and the area of the composite figure. Round your answers to the nearest hundredth, if necessary.

RECORD THE SIDE LENGTHS BELOW.
$C W=$ \qquad $C T=$ \qquad
$M W=$ \qquad $M T=$ \qquad

Perimeter: \qquad Area: \qquad
17. Determine the perimeter and the area of the composite figure. Round your answers to the nearest hundredth, if necessary.

RECORD THE SIDE LENGTHS BELOW.
$D I=$ \qquad $I N=$ \qquad $N O=$ \qquad
$O S=$ \qquad $S A=$ \qquad $A U=$ \qquad
$U R=$ \qquad $R D=$ \qquad

Perimeter: \qquad Area: \qquad

In the space provided, create your own composite figure that incorporates the following:

- At least six sides.
- At most HALF of the sides can be horizontal and/or vertical.
- Each vertex is labeled with a different letter.
- Each quadrant is used.

Look at Problem 17 for an example of what is expected.

Then, determine the perimeter and area of your composite figure.

