\qquad
11.REV. 2 ~ Polynomial Functions

Date: \qquad Period: \qquad
Problems $1-8$, match each equation or description to one of the graphs.

1. An even function with no x-intercepts and a positive leading term
2. An even function with three real zeros and a negative leading coefficient
3. An odd function with one real root/zero and a negative leading coefficient
4. $f(x)=-a x^{3}+b$
5. $g(x)=a x^{3}+\cdots+d$
6. $h(x)=a x^{4}+\cdots-e$
7. $p(x)=a x^{5}+\cdots-f$
8. $q(x)=-a x^{5}+\cdots+g$

Determine the long-run/end behavior of the polynomial function.
9. $f(x)=\left(x^{5}-1\right)^{2}\left(x^{2}+2\right)^{3}$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} f(x)= \\
& \lim _{x \rightarrow \infty} f(x)=
\end{aligned}
$$

10. $f(x)=\left(10-3 x^{5}\right)^{2}\left(5-x^{4}\right)^{3}(x+4)$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} f(x)=- \\
& \lim _{x \rightarrow \infty} f(x)=
\end{aligned}
$$

A.

B.

c.

D.

E.

F.

G.

н.

Factor the cubic polynomials.
11. $f(x)=64 x^{3}-8$
12. $f(x)=27 x^{3}+125$

Analyze each polynomial function for its long-run and short-run behavior. Use the appropriate method: factoring (if necessary) and the Zero Product Property, the Square Root Property, or the Quadratic Formula, to find the x intercepts/zeros of the polynomial function. If necessary, round to 2 decimal places.
13. $f(x)=7 x^{2}-16 x+4$

$\lim _{x \rightarrow-\infty} f(x)=$ \qquad CONSTANT:

WRITE IN FACTORED FORM.

\qquad
ROOTS/ZEROS:
14. $f(x)=3 x^{3}+x^{2}-48 x-16$

15. $f(x)=-x^{6}+3 x^{4}-2 x^{2}$

16. $f(x)=\left(4 x^{2}-5\right)\left(x^{2}-2 x-5\right)$
\qquad

$$
\lim _{x \rightarrow-\infty} f(x)=
$$

\qquad CONSTANT: \qquad $\lim _{x \rightarrow \infty} f(x)=$ \qquad ROOTS/ZEROS:

Analyze each polynomial function for its long-run and short-run behavior. Sketch its graph of by hand.
17. $f(x)=2(x-2)^{2}(x-4)^{3}$
LEADING TERM: x-INTERCEPTS:

END BEHAVIOR:
$\lim _{x \rightarrow-\infty} f(x)=$
$\lim _{x \rightarrow \infty} f(x)=$

y-INTERCEPT:
18. $f(x)=-x^{3}(x-1)^{2}(x+4)$

LEADING TERM:
END BEHAVIOR: $\lim _{x \rightarrow-\infty} f(x)=\quad \lim _{x \rightarrow \infty} f(x)=$ y-INTERCEPT:

ZERO MULTIPLCITY $\frac{\text { CROSSOR }}{\text { TOUCH }}$ TOUCH
$\begin{array}{cc}\text { SKETCH: } & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array}$

Find a formula for the polynomial whose graph is shown.

19.
20.

22. Degree 5 ; double zero at $x=1$; triple zero at $x=3$; passes through the point $(2,15)$

