11. REV.2 ~ POLYNOMIAL FUNCTIONS

Problems 1 - 8, match each equation or description to one of the graphs.

- 1. An even function with no *x*-intercepts and a positive leading term
- An even function with three real zeros and a negative leading coefficient 2.
- An odd function with one real root/zero and a negative leading coefficient 3.
- 4. $f(x) = -ax^3 + b$
- 5. $g(x) = ax^3 + \dots + d$
- 6. $h(x) = ax^4 + \dots e$
- 7. $p(x) = ax^5 + \dots f$
- 8. $q(x) = -ax^5 + \dots + q$

Determine the long-run/end behavior of the polynomial function.

 $\lim_{x \to -\infty} f(x) = _$

Date:

Period:

Factor the cubic polynomials.

11.
$$f(x) = 64x^3 - 8$$
 12. $f(x) = 27x^3 + 125$

Analyze each polynomial function for its long-run and short-run behavior. Use the appropriate method: factoring (if necessary) and the Zero Product Property, the Square Root Property, or the Quadratic Formula, to find the xintercepts/zeros of the polynomial function. If necessary, round to 2 decimal places.

13. $f(x) = 7x^2 - 16x + 4$		14. $f(x) = 3x^3 + x^2 - 48x - 16$	
DEGREE:	$\lim f(x) = \underline{\qquad}$	DEGREE:	$\lim f(x) = _$
LEADING COEFFICIENT:	$x \rightarrow -\infty$	LEADING COEFFICIENT:	$x \rightarrow -\infty$
CONSTANT:	$\lim_{x \to \infty} f(x) = \underline{\qquad}$	CONSTANT:	$\lim_{x \to \infty} f(x) = \underline{\qquad}$
WRITE IN FACTORED FORM.	ROOTS/ZEROS:	WRITE IN FACTORED FORM.	ROOTS/ZEROS:

15.
$$f(x) = -x^6 + 3x^4 - 2x^2$$

DEGREE: ______ $\lim_{x \to -\infty} f(x) =$ _____
LEADING COEFFICIENT: ____ $\lim_{x \to \infty} f(x) =$ _____
CONSTANT: ____ $\lim_{x \to \infty} f(x) =$ _____
WRITE IN FACTORED FORM. ROOTS/ZEROS:

16.
$$f(x) = (4x^2 - 5)(x^2 - 2x - 5)$$

DEGREE: ______ $\lim_{x \to -\infty} f(x) =$ _____
LEADING COEFFICIENT: ____ $\lim_{x \to \infty} f(x) =$ _____
CONSTANT: _____ $\lim_{x \to \infty} f(x) =$ _____

G.

Analyze each polynomial function for its long-run and short-run behavior. Sketch its graph of by hand.

Find a formula for the polynomial whose graph is shown.

21. Zeros at x = 1 & x = -2; end behavior: $\lim_{x \to -\infty} f(x) = 22$. Degree 5; double zero at x = 1; triple zero at x = 1; triple zero at x = 3; passes through the point (2, 15)