\qquad
\qquad

1) What are the first 12 perfect squares?

Rewrite each radical by extracting all perfect squares. SHOW ALL WORK. (If necessary, refer to the $\mathbf{1 2 . 6}$ example "Simplifying Square Roots" in the Chapter 12 Summary.)
2) $\sqrt{18}$
3) $\sqrt{24}$
4) $\sqrt{45}$
5) $\sqrt{54}$
6) $\sqrt{72}$
7) $\sqrt{112}$

Factor each DIFFERENCE OF TWO SQUARES or PERFECT SQUARE TRINOMIAL completely. Remember to look for a GCF first! (If necessary, refer to the $\mathbf{1 2 . 5}$ example "Identifying Special Products of Degree 2" in the Chapter 12 Summary.)
8) $100 x^{2}-49$
9) $9 a^{2}+30 a+25$
10) $9 r^{2}+108 r+324$
11) $5 x^{2}-605$
12) $10 b^{2}-29 b+10$
13) $-4 b^{2}-8 b+21$
14) $9 m^{2}+18 m+5$
15) $4 a^{2}+12 a+5$

SPIRAL REVIEW

16) Owen's hourly pay for delivering pizzas is represented by the linear function $f(x)=6.5+0.75 x$, where x is the number of pizzas he delivers. Which statements are true about Owen's pay? Select ALL that apply.
A) If Owen delivers 10 pizzas in an hour, he will earn $\$ 14$ for that hour.
B) If Owen delivers no pizzas, his pay is $\$ 6.50$ per hour.
C) Owen earns $\$ 0.75$ for each pizza he delivers.
D) Owen earns 75% of the cost of each pizza.
17) Which formula represents the sequence $5,10,15,20, \ldots$?
A) $a_{n}=5+(n-1) \cdot 2$
B) $a_{n}=5+(n-1) \cdot 5$
C) $a_{n}=2 \cdot 5^{n-1}$
D) $a_{n}=5 \cdot 2^{n-1}$
18) Which of the following statements is NOT true about the quadratic function $y=2(x+1)^{2}-2$
A) The vertex is $(-1,-2)$.
B) The function has a maximum value.
C) The range is $y \geq-2$
D) The zeros are -2 and 0 .
19) Which of the following points is NOT a solution to the linear inequality $y \leq \frac{5}{4} x+3$?
A) $(0,-4)$
B) $(-4,0)$
C) $(4,0)$
D) $(0,0)$
20) What is the common ratio of the geometric sequence $6,-3,1.5,-0.75$?
A) -2
B) -0.5
C) 0.5
D) 2
