### 13.1.D2 ~ The Quadratic Formula

$\qquad$
$\qquad$
Use the discriminant to determine the number of zeros or roots each quadratic function has. (If necessary, refer to the 13.1 example "Determining the Number of Roots for a Quadratic Function" in the Chapter 13 Summary.)

1) $y=x^{2}+4 x+3$
2) $y=-3 x^{2}-12 x-12$
3) $y=2 x^{2}-5 x+10$
4) $y=-x^{2}-x$

Use the Quadratic Formula to determine the exact zeros or roots of each function or equation. Solve for EXACT solutions; rewrite the roots in simplified radical form. (If necessary, refer to the 13.1 example "Using the Quadratic Formula to Determine the Zeros of a Quadratic Function or the Roots of a Quadratic Equation" in the Chapter 13 Summary.)
5) $5 x^{2}+8 x-3=1$
6) $f(x)=-2 x^{2}+5 x-1$

Solve the problem using the Quadratic Formula.
7) A water balloon is thrown upward from a height of 5 feet with an initial velocity of 35 feet per second. The quadratic function $h=-16 t^{2}+35 t+5$ represents the height of the balloon, $h$, in feet $t$ seconds after it is thrown. How long does it take for the balloon to reach the ground? (Round your solution to the nearest tenth of a second.)

Solve each quadratic equation by taking square roots. Approximate the solutions to the nearest hundredth. (If necessary, refer to the $\mathbf{1 2 . 6}$ example "Extracting Square Roots to Solve Equations" in the Chapter 12 Summary.)
8) $(k+12)^{2}=97$
9) $(7-k)^{2}=37$

Rewrite each radical by extracting all perfect squares. SHOW ALL WORK. (If necessary, refer to the $\mathbf{1 2 . 6}$ example "Simplifying Square Roots" in the Chapter 12 Summary.)
10) $\sqrt{192}$
11) $\sqrt{108}$
12) $\sqrt{252}$
13) $\sqrt{147}$
14) If $8 x^{2}-6 x-9$ is factored as $(a x+b)(c x-d)$ when $a, b, c$, and $d$ are positive integers, then what is the value of $b$ ?

