\qquad

Past due on: \qquad Period: \qquad
Identify the independent and dependent quantities (including units) in each problem situation. Assign a variable to each quantity. Then write a function to represent the problem situation. Refer to the 2.1 example "Identifying Dependent \& Independent Quantities and Writing an Expression" in the Chapter 2 Summary.

1. Sophia is walking to the mall at a rate of 3 miles per hour.

Independent quantity: \qquad Variable: \qquad
Dependent quantity: \qquad Variable: \qquad
Function: \qquad
2. The football booster club sells hot chocolate during the varsity football games. Each cup of hot chocolate costs $\$ 2$.

Independent quantity: \qquad Variable: \qquad
Dependent quantity: \qquad Variable: \qquad
Function: \qquad
Solve each function for the given input value. The function $A(t)=7 t$ represents the total amount of money in dollars Carmen earns babysitting as a function of time in hours. Refer to the 2.1 example "Determining the Solution to a Linear Equation Using Function Notation" in the Chapter 2 Summary.
3. $A(5)$
4. $A(3.5)$

Use each scenario to complete the table of values and calculate the unit rate of change. Refer to the 2.1 examples "Identifying Dependent \& Independent Quantities and Writing an Expression" and "Determining the Unit Rate of Change" in the Chapter 2 Summary.
5. Jada is walking to school at a rate of 2 miles per hour.

UNIT RATE OF CHANGE:

	INDEPENDENT QUANTITY	DEPENDENT QUANTITY
QUANTITY		
UNITS		
	0.25	
	0.5	
	1	
	1.25	
	1.5	

6. The volleyball boosters sell bags of popcorn during the varsity matches to raise money for new uniforms. Each bag of popcorn costs $\$ 3$.

UNIT RATE OF CHANGE:

	INDEPENDENT QUANTITY	DEPENDENT QUANTITY
QUANTITY		
	5	
	10	
	15	
	20	
	25	

Identify the expression representing the input value, the output value, and the rate of change for each function. Refer to "Problem 2.1: Analyzing Equations \& Graphs" in your text.
7. Belinda is making greeting cards. She makes 4 cards per hour. The function $C(t)=4 t$ represents the total number of cards Belinda makes as a function of time.

Input value: \qquad Output value: \qquad Rate of change: \qquad
8. Santiago is driving to visit a college campus. He is traveling 65 miles per hour. The function $D(t)=65 t$ represents the total distance he travels as a function of time.

Input value: \qquad Output value: \qquad Rate of change: \qquad

First use the distributive property and/or collect like terms on the left side of the equation. Then use inverse operations to solve the equation. Show all work.
9. $55-10 m=2-7(3 m+5)$
10. $-51-4 x=4(x-3)+9$

