\qquad

21.D3 - LINEAR SITUATIONS

Past due on: \qquad Period: \qquad
Use each scenario to complete the table of values and calculate the unit rate of change. Refer to the 2.1 examples "Identifying Dependent \& Independent Quantities and Writing an Expression" and "Determining the Unit Rate of Change" in the Chapter 2 Summary.

1. Noah is stuffing envelopes with invitations to the school's Harvest Festival. He stuffs 4 envelopes each minute.

UNIT RATE OF CHANGE:

2. Tyrone plays on the varsity basketball team. He averages 12 points per game.

UNIT RATE OF CHANGE:

	INDEPENDENT QUANTITY	DEPENDENT QUANTITY
QUANTITY		
	1	
	3	
	5	
	7	
	9	

Identify the expression representing the input value, the output value, and the rate of change for each function. Refer to "Problem 2.1: Analyzing Equations \& Graphs" in your text.
3. Olivia is riding her bike to her friend's house at a rate of 6 miles per hour. The function $D(t)=6 t$ represents the distance Olivia rides as a function of time.

Input value: \qquad Output value: \qquad Rate of change: \qquad
4. Frankie mows lawns in his neighborhood to earn money. He earns $\$ 16$ for each lawn. The function $A(m)=16 m$ represents the total amount of money earned as a function of the number of lawns mowed.

Input value: \qquad Output value: \qquad Rate of change: \qquad

Use the graph to determine the input value for each given output value. The function $D(t)=40 t$ represents the total distance traveled in miles as a function of time in hours. Refer to the 2.1 examples "Determining the Solution to a Linear Equation on a Graph Using an Intersection Point" in the Chapter 2 Summary.
5. $D(t)=120$
6. $D(t)=320$
7. $D(t)=240$
8. $D(t)=160$
9. $D(t)=80$
10. $D(t)=400$

13. Suppose t represents the time, in years, and $h(t)$ represents the height of the tree in terms of feet over a period of time. Complete a tables of values to describe this situation.

t	$h(t)$
2	
4	
6	
8	

14. Sketch the graph of the problem situation and label the axes.

15. Is your graph continuous or discrete?
16. What function family is represented in this situation?
