\qquad
\qquad Period: \qquad
True or false? If false, explain your reasoning.

1. If $f(t)=3 t^{2}-4$, then $f(2)=0$.
2. If $f(t)=t^{2}+64$, then $f(0)=64$.
3. The domain of a function is the set of input values.
4. The domain of $f(x)=\frac{4}{x-3}$ consists of all real numbers $x, x \neq 0$.
5. If $g(x)=\sqrt{2-x}$, the domain of g consists of a real numbers $x \geq 2$.
6. If $h(x)=\frac{2}{5} x+6$ and its domain is $15 \leq x \leq 20$, then the range of h is $12 \leq h(x) \leq 14$.

Use the graph of f to identify the following characteristics.
7. Domain:
8. Range:
9. Increasing interval:
10. Decreasing interval:
11. Evaluate $f(-1)$

Algebraically find the domain of the function.
12. $d(x)=\frac{x-3}{x+6}$
13. $m(x)=\frac{2}{x^{2}-9}$
14. $I(x)=\sqrt{6-2 x}$
15. $n(x)=3 \sqrt{2 x-10}$

Use the function's graph to identify the indicated characteristics.

Relative maximum:
Relative minimum:
Increasing interval(s):
Decreasing interval(s):
Concave up interval:

Concave down interval:

Solve $f(x)=-2$ for x.

Range:
Relative maximum:
Increasing interval(s):
Decreasing interval(s):
Constant interval(s):

Concave down interval:

Solve $f(x)=2$ for x.
18. Use the piecewise function formula and/or its graph to determine the following:
$w(x)= \begin{cases}(x+4)^{4}, & x \leq-3 \\ 4-x^{2}, & -3<x \leq 1 \\ 3, & x>1\end{cases}$
Evaluate:

$w(-3)=$	$w(1)=$
$w(-1)=$	$w(-5)=$
$w(-7)=$	$w(30)=$

Domain:
Range:
Increasing interval(s):
Decreasing interval(s):
Constant interval(s):
Concave up interval:
Concave down interval:
Relative maximum:
Relative minimum:

Write a piecewise function formula and identify the domain and range.

Graph the piecewise function. Also identify its domain and range.
21.
$f(x)= \begin{cases}x+3, & x<-4 \\ 6, & -4 \leq x<2 \\ 2 x-4, & x \geq 2\end{cases}$

22.
$g(x)= \begin{cases}x+1, & x<-1 \\ -x+4, & -1 \leq x<4 \\ -6, & x \geq 4\end{cases}$

23. A bakery has the following pricing for large orders of cupcakes. The first 100 cupcakes of any order cost $\$ 2$ each. Each of the next 150 cupcakes only cost $\$ 1.75$ each. Each cupcake ordered in excess of 250 costs $\$ 1.25$ each. The total cost, C, is a function of the number of cupcakes ordered, x.
a. Write a piecewise function for the total cost.
b. The school orders 15 dozen cupcakes. What is the cost?
c. A couple orders 450 cupcakes for their wedding. What did they pay?

