Name: _____

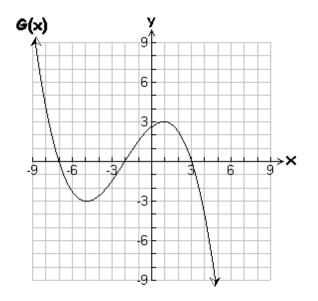
Chapter 2: Functions 2.REV.2 – END OF CHAPTER REVIEW

True or false? If false, explain your reasoning.

- 1. If $f(t) = 3t^2 4$, then f(2) = 0.
- 2. If $f(t) = t^2 + 64$, then f(0) = 64.
- 3. The domain of a function is the set of input values.

4. The domain of
$$f(x) = \frac{4}{x-3}$$
 consists of all real numbers $x, x \neq 0$.

- 5. If $g(x) = \sqrt{2 x}$, the domain of *g* consists of a real numbers $x \ge 2$.
- 6. If $h(x) = \frac{2}{5}x + 6$ and its domain is $15 \le x \le 20$, then the range of *h* is $12 \le h(x) \le 14$.
- 7. If f(3) = 5 and f is invertible, then $f^{-1}(3) = \frac{1}{5}$.


8. If
$$h(7) = 4$$
 and *h* is invertible, then $h^{-1}(4) = 7$.

9. If
$$f(x) = \frac{3}{4}x - 6$$
 then $f^{-1}(8) = 0$.

10. The functions f(x) = 2x + 1 and g(x) = 0.5x - 1 are inverses.

Problems 11 - 18: Use the graph of G(x).

- 11. Evaluate G(-5).
- 12. Solve G(x) = 0.
- 13. There is a minimum of _____ at x =____.
- 14. There is a maximum of _____ at x =____.
- 15. G(x) is invertible on the interval $[1, \infty)$. Find $G^{-1}(?) = 2$.
- 16. G(x) is invertible on the interval $(-\infty, -5]$. Find $G^{-1}(4) = ?$.
- 17. On what interval is G(x) decreasing and concave up?
- 18. What is the concavity when x > 1?

Past due on: ______ Period: _____

Algebraically find the domain of the function.

19.
$$d(x) = \frac{x-3}{x+6}$$
 20. $O(x) = \frac{3x+1}{4x+2}$ 21. $m(x) = \frac{2}{x^2-9}$

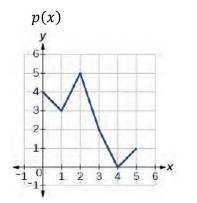
22.
$$A(x) = 3\sqrt{x+3}$$
 23. $I(x) = \sqrt{6-2x}$ 24. $n(x) = 5 + \sqrt{2x-10}$

25. Given the function $J = f(s) = \frac{6}{3s+2}$ a. Find the inverse function, $f^{-1}(J)$.

b. Use the inverse function to identify the range of *J*.

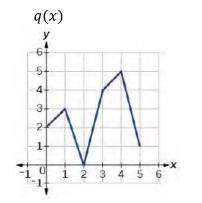
26. Let
$$f(x) = x^2 - 1 \& g(x) = 2x - 3$$
.
a. Find $f(g(x))$.
b. Find $g(f(x))$.

c. Find
$$f(g(3))$$
. d. Find $g(f(-2))$.


e. Find $g^{-1}(2)$. f. Find $g^{-1}(?) = 9$.

27. f and g are defined by the following tables. Use the tables to evaluate each composite function.

a. f(g(1))


- b. f(g(4))
- c. g(f(-1))
- *d*. g(f(0))

28. The functions p and q are defined by the following graphs. Evaluate the indicated function.

29. Write a function formula for

the piecewise function g(x).

b. p(q(4))
c. q(p(1))
d. q(p(0))
e. p(p(5))

a. p(q(3))

f(x)

1

4

5

-1

х

-1

1

4

10

g(x)

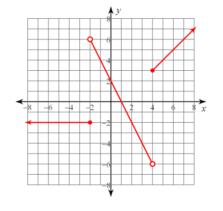
0

1

2

-1

х


-1

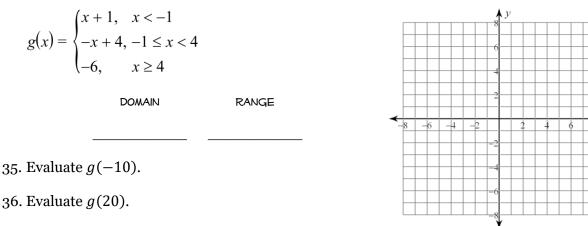
0

1

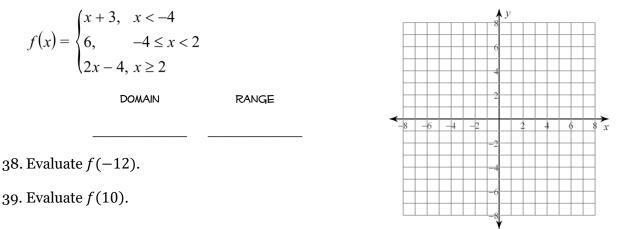
2

f. q(q(2))

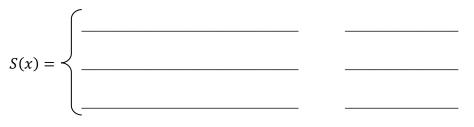
30. What is the domain of g(x)?


31. What is the range of g(x)?

x


32. Evaluate g(4).

33. Solve g(x) = 4.


34. Graph the piecewise function. Also identify its domain and range.

37. Graph the piecewise function. Also identify its domain and range.

- 40. You work as a special events salesperson for a golf course owned by your city. Your salary is based on the following. You receive a flat salary of \$1500 per month for sales of \$10,000 or less; for the next \$30,000 of sales, you receive your salary plus 2% of the sales over \$10,000 and up to \$40,000; and for any sales exceeding \$40,000, you receive your salary and commission of 4% of sales over \$40,000. Your salary is a function of the sales.
 - a. Identify the input variable.
 - b. Identify the output variable.
 - c. If the sales are \$25,000, what is your salary?
 - d. If the sales are \$55,000, what is your salary?
 - e. Write a piecewise defined function, S(x), that represents your salary as a function of the sales, x.

f. You need to make \$3150 to cover your expenses this month. What will your sales have to be for your salary to be that amount?