\qquad
\qquad Period: \qquad
True or false? If false, explain your reasoning.

1. If $f(t)=3 t^{2}-4$, then $f(2)=0$.
2. If $f(t)=t^{2}+64$, then $f(0)=64$.
3. The domain of a function is the set of input values.
4. The domain of $f(x)=\frac{4}{x-3}$ consists of all real numbers $x, x \neq 0$.
5. If $g(x)=\sqrt{2-x}$, the domain of g consists of a real numbers $x \geq 2$.
6. If $h(x)=\frac{2}{5} x+6$ and its domain is $15 \leq x \leq 20$, then the range of h is $12 \leq h(x) \leq 14$.
7. If $f(3)=5$ and f is invertible, then $f^{-1}(3)=1 / 5$.
8. If $h(7)=4$ and h is invertible, then $h^{-1}(4)=7$.
9. If $f(x)=\frac{3}{4} x-6$ then $f^{-1}(8)=0$.
10. The functions $f(x)=2 x+1$ and $g(x)=0.5 x-1$ are inverses.

Problems 11-18: Use the graph of $G(x)$.
11. Evaluate $G(-5)$.
12. Solve $G(x)=0$.
13. There is a minimum of \qquad at $x=$ \qquad .
14. There is a maximum of \qquad at $x=$ \qquad .
15. $G(x)$ is invertible on the interval $[1, \infty)$. Find $G^{-1}(?)=2$.
16. $G(x)$ is invertible on the interval $(-\infty,-5]$. Find $G^{-1}(4)=$?
17. On what interval is $G(x)$ decreasing and concave up?
18. What is the concavity when $x>1$?

Algebraically find the domain of the function.
19. $d(x)=\frac{x-3}{x+6}$
20. $O(x)=\frac{3 x+1}{4 x+2}$
21. $m(x)=\frac{2}{x^{2}-9}$
22. $A(x)=3 \sqrt{x+3}$
23. $I(x)=\sqrt{6-2 x}$
24. $n(x)=5+\sqrt{2 x-10}$
25. Given the function $J=f(s)=\frac{6}{3 s+2}$
a. Find the inverse function, $f^{-1}(J)$.
b. Use the inverse function to identify the range of J.
26. Let $f(x)=x^{2}-1 \& g(x)=2 x-3$.
a. Find $f(g(x))$.
b. Find $g(f(x))$.
c. Find $f(g(3))$.
d. Find $g(f(-2))$.
e. Find $g^{-1}(2)$.
f. Find $g^{-1}(?)=9$.
27. f and g are defined by the following tables. Use the tables to evaluate each composite function.
a. $f(g(1))$
b. $f(g(4))$
c. $g(f(-1))$
d. $g(f(0))$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-1	1
0	4
1	5
2	-1

\boldsymbol{x}	$\boldsymbol{g (x)}$
-1	0
1	1
4	2
10	-1

28. The functions p and q are defined by the following graphs. Evaluate the indicated function.

a. $p(q(3))$
b. $p(q(4))$
c. $q(p(1))$
d. $q(p(0))$
e. $p(p(5))$
f. $q(q(2))$
29. Write a function formula for the piecewise function $g(x)$.

30. What is the domain of $g(x)$?
31. What is the range of $g(x)$?
32. Evaluate $g(4)$.
33. Solve $g(x)=4$.
34. Graph the piecewise function. Also identify its domain and range.

$$
g(x)= \begin{cases}x+1, & x<-1 \\ -x+4, & -1 \leq x<4 \\ -6, & x \geq 4\end{cases}
$$

DOMAIN
RANGE
35. Evaluate $g(-10)$.
36. Evaluate $g(20)$.

37. Graph the piecewise function. Also identify its domain and range.

$$
f(x)= \begin{cases}x+3, & x<-4 \\ 6, & -4 \leq x<2 \\ 2 x-4, & x \geq 2\end{cases}
$$

DOMAIN RANGE
\qquad
38. Evaluate $f(-12)$.
39. Evaluate $f(10)$.

40. You work as a special events salesperson for a golf course owned by your city. Your salary is based on the following. You receive a flat salary of $\$ 1500$ per month for sales of $\$ 10,000$ or less; for the next $\$ 30,000$ of sales, you receive your salary plus 2% of the sales over $\$ 10,000$ and up to $\$ 40,000$; and for any sales exceeding $\$ 40,000$, you receive your salary and commission of 4% of sales over $\$ 40,000$. Your salary is a function of the sales.
a. Identify the input variable.
b. Identify the output variable.
c. If the sales are $\$ \mathbf{2 5}, 000$, what is your salary?
d. If the sales are $\$ 55,000$, what is your salary?
e. Write a piecewise defined function, $S(x)$, that represents your salary as a function of the sales, x.

f. You need to make $\$ 3150$ to cover your expenses this month. What will your sales have to be for your salary to be that amount?

