\qquad

2.REV. 2 - Linear Functions Revielo

Past due on: \qquad Period: \qquad
Problems 1-8: True or false? Iffalse, explain your reasoning.

1. A linear function can have different rates of change over different intervals.
2. A linear function can have a slope that is zero.
3. The line $3 x+5 y=7$ has a slope of $3 / 5$.
4. A line that goes through the point $(-2,3)$ and whose slope is 4 has the equation $y=4 x+5$.
5. The line $4 x+3 y=52$ intersects the x-axis at $x=13$.
6. The line that passes through the points $(1,2)$ and $(4,-10)$ has slope 4 .
7. The lines $y=8-3 x$ and $-2 x+16 y=8$ both cross the y-axis at $y=8$.
8. The linear equation $y-5=4(x+1)$ is equivalent to the equation $y=4 x+6$.

For each line whose equation is given, find the slope, x-intercept, and y-intercept. Then graph the line.
9. $y=\frac{5}{3} x-4$

Slope: \qquad
x-intercept: \qquad
y-intercept: \qquad

10. $y=-\frac{1}{4} x+2$

Slope: \qquad
x-intercept: \qquad
y-intercept: \qquad

11. $5 x-10 y=20$

Slope: \qquad
x-intercept: \qquad

12. $3 x+4 y=-8$

Slope: \qquad x-intercept: \qquad
\qquad

Determine whether the table of values represents a linear function. If so, identify its rate of change.
13.

x	$f(x)$
-5	-10
2	5
6	20
9	35

14.

x	$g(x)$
10	0
20	15
24	21
40	45

15.

x	$h(x)$
-4	15
4	9
8	6
10	4.5

Identify the lines as parallel, perpendicular, or neither.
$8 x-10 y=16$
$y=7+9 x$
passes through $(-2,-7) \&(3,8)$
16. $y=-\frac{4}{5} x+7$
17. $y-4=-\frac{1}{9}(x+5)$
18. $y=\frac{1}{3} x-2$

Write the equation of a line that passes through the given points. Simplify, if necessary, to write the equation in slope-intercept form.
19. $m=-\frac{1}{2} ; x$ intercept $=6$
20. $m=-3 ;(1,-5)$
21. x int. $=12 ; y$ int. $=-3$
22. $(-3,-4) \&(2,16)$
23. perpendicular to $3 x-5 y=2$; passes through $(3,-6)$
24. parallel to $5 x+y=6$; passes through $(5,3)$

