Name: _____

3.1.D3 – L<u>inear regression</u>

Past due on: Period:

Use a graphing calculator to determine the linear regression equation and the correlation coefficient (rounded to 4 decimal places) for each given set of data. Then use the equation to make the prediction. *Refer to the 3.1 example "Using Linear Regression to Model Data and Make Predictions" in the Chapter 3 Summary.*

- 1. The table shows the attendance for the varsity football games at Pedro's high school.
 - a. Linear regression equation:
 - b. Correlation coefficient:
 - c. Predict the attendance for Game 9.

GAME	ATTENDANCE			
1	2000			
2	2132 2198			
3				
4	2301			
5	2285			
6	2401			

MONTH	PRICE OF GAS		
January	3.15		
February	3.22		
March	3.19		
April	3.28 3.35		
May			
June	3.32		

- 2. The table shows the average price for a gallon of gas for 6 months. *January is represented by* x = 1.
 - a. Linear regression equation:
 - b. Correlation coefficient:
 - c. Predict the average price for a gallon of gas in August.

Identify the independent and dependent quantities (including units) in each problem situation. Assign a variable to each quantity. Then write a function to represent the problem situation. *Refer to the 2.1 example "Identifying Dependent & Independent Quantities and Writing an Expression" in the Chapter 2 Summary.*

3. Manuel has already sold \$20 worth of tickets to the school play. He still has tickets left to sell at \$2.50 per ticket. Write a function to describe how much money Manuel can collect from selling tickets.

Independent quantity: _____ Variable: _____

Dependent quantity: _____ Variable: _____

Function: _____

4. A mail-order company charges \$5 for an order plus \$2 per item in the order. Write a function to describe the total amount charged for a mail-order.

Independent quantity: ______ Variable: _____

Dependent quantity: _____ Variable: _____

Function:

5. A pool containing 10,000 gallons of water is being drained. Every hour, the volume of the water in the pool decreases by 1500 gallons. Write a function to describe the volume of water in the pool.

Independent quantity: ______ Variable: _____

Dependent quantity: _____ Variable: _____

Function: _____

Chapter 3: Linear Functions

6. A photographer charges a sitting fee of \$15 plus \$3 for each pose. Write a function to describe the total amount the photographer charges.

Independent quantity:	Variable:
Dependent quantity:	Variable:

Function: _____

Complete the table to represent each problem situation. *Refer to the 2.2 example "Comparing Tables, Equations, and Graphs to Model and Solve Linear Situations" in the Chapter 2 Summary.*

7. Cassidy went to the movies with some of her friends. The tickets cost \$6.50 each and they spent \$17.50 on snacks.		INDEPENDENT QUANTITY	DEPENDENT QUANTITY	
	QUANTITY		TOTAL COST	
		UNITS		
			1	
		5		
				63
		EXPRESSION		
8. Three friends go bowling. The cost per person per game is \$5.30. The cost to rent shoes is \$2.50 per person.		INDEPENDENT QUANTITY	DEPENDENT QUANTITY	
	QUANTITY		TOTAL COST	
	UNITS			
		1		
		3		
				102.90
		EXPRESSION		

Solve each compound inequality and graph its solution set. *Refer to the 2.4 example "Solving Compound Inequalities" in the Chapter 2 Summary.*

$$9.-15 \le 4x - 3 < 9$$
 10. $5x - 3 > 7$ or $4x - 6 < -10$

