\qquad

3.3 - vertical Stretches $\underset{\text { ç compressions }}{ }$

\qquad Period: \qquad

1. Let $y=f(x)$. Write a formula for the transformation that both increases the y-value by a factor of 10 and shifts the graph to the right by 2 units.
2. The points $(-12,20) \&(0,6)$ lie on the graph of f. The graph of h is found by shifting the graph of f to the left 3 units, stretching it vertically by a factor of 2 , then shifting it up 6 units.
a. Find a formula for h in terms of f.
b. Determine the coordinates of the corresponding two points on the graph of h.
3. Suppose $(-3,5)$ is a point on the graph of $y=g(x)$.

What point is on the graph of $y=-3 g(x-4)+3$?
4. The function $h(x)$ has domain $[-3,6]$ and range $[-5,4]$.

What is the domain and the range of $y=3 h(x+4)-1$?

Match the function with its graph. Use your knowledge of graphing transformations and not a calculator. The parent function, $y=|x|$, is shown first.
5. $g(x)=-2|x|$
6. $g(x)=|x-1|+1$
7. $g(x)=-\frac{1}{3}|x|$
8. $g(x)=2|x|$
9. $g(x)=|x+2|$
10. $g(x)=|x|+3$
11. $g(x)=-\frac{1}{2}|x-4|$
12. $g(x)=\frac{1}{2}|x|-3$
13. $g(x)=-|x|-2$

14. Use the graph of $f(x)$ to find a possible formula for the transformation of f shown.

The graph of the parent function $y=f(x)$ is shown (below). The functions $g(x) \& h(x)$ are transformations of $f(x)$. Find formulas for $g(x) \& h(x)$ in terms of $f(x)$.

$$
y=f(x)
$$

15. $g(x)$

16. $h(x)$

Describe the transformation(s) that have been applied to the graph of $f(x)$. Then write a formula in terms of $f(x)$ for the graph shown.

17. ${ }_{5}$

18.

19. ${ }_{9}{ }^{-}$

Match the transformation of the function $y=f(x)$ with a graph.
20. $y=2 f(x)$
21. $y=\frac{1}{3} f(x)$
22. $y=-f(x+1)$
24. $y=f(-x)$
23. $y=f(x+2)+1$
(a) y

(d)

(b)

(e)

(h)

(c)

(f)

(g)

(i)

