\qquad
\qquad Period: \qquad
Identify the domain, range, and end behavior of each function.
1.

Domain:
Range:
$\lim _{x \rightarrow-\infty} f(x)=\quad \lim _{x \rightarrow \infty} f(x)=$
2.

Domain:
Range:
$\lim _{x \rightarrow-\infty} f(x)=$
3.

Domain:
Range:
$\lim _{x \rightarrow-\infty} f(x)=\quad \lim _{x \rightarrow \infty} f(x)=$
4. What is the domain of f ?
5. What is the range of f ?
6. What are the x-intercepts?
7. What is the y-intercept?
8. For what values of x does $f(x)=3$?
9. Identify the local maximum: \qquad ; location: $x=$ \qquad

Use with problems 4-12.

10. Identify the local minimum: \qquad ; location: $x=$ \qquad
11. Identify the increasing interval(s):
12. Identify the decreasing interval(s):

The point $(3,-4)$ is on the graph of the function $f(x)$. Find the corresponding point on the graph obtained by the given transformations.
13. $y=15 f(x+2)-5$
14. $y=-\frac{1}{4} f(x-5)$
15. $y=-2(-x)+4$
16. The domain D and range R of function f are given. Identify the domain and range of g.

$$
D=[-9,5], R=[4,8] ; g(x)=\frac{3}{4} f(x-1)-3
$$

17. Describe the transformation(s) that have been applied to the graph of $h(x)$ to create the graph on the right. Then write a formula in terms of $h(x)$.

The graph of the parent function $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ is shown in figure a. Match the function $g(x)$ with one of the graphs $\mathrm{b}-\mathrm{h}$, which follow. Some graphs may be used more than once and some may not be used at all.
18. $g(x)=f(-x)+3$
19. $g(x)=f(x)+3$
20. $g(x)=-f(x)+3$
21. $g(x)=-f(x+2)$
22. $g(x)=-\frac{1}{3} f(-x)+3$
23. $g(x)=\frac{1}{3} f(x+2)$
24. $g(x)=\frac{1}{3} f(x)-3$
c)
b)

25. $g(x)=\frac{1}{3} f(x-2)$

h)

Describe the transformation(s) that have been applied to the graph of $f(x)$ - which is solid - to create the graph of $g(x)$ - which is dashed. Then write a formula for $g(x)$ in terms of $f(x)$.

27.

28.

