\qquad

4.3.D2 - Intercepts of quadratic Functions

Date: \qquad Period: \qquad
For each quadratic function, determine the direction of opening, the y-intercept, and find the zeros. If necessary, round values to two decimal places.

1. $q(x)=-2(x-3)(x+4)$
2. $u(x)=3(x+2)(x+6)$
3. $a(x)=-3 x^{2}-6 x+5$
4. $d(x)=-2 x^{2}+8 x+7$
5. $r(x)=-2(x-3)^{2}+1$
6. $c(x)=3(x+2)^{2}-5$

Write the equation of the parabola (in intercept form) whose graph is given or described.
7.

8.

9. x-intercepts of $12 \&-6$; passes through $(14,4)$
10. x-intercepts of $-16 \&-2$; passes through $(-18,72)$
11. Which one of the following equations has the graph shown? Explain your reasoning.
a. $y=(1-x)(1+x)$
b. $y=(x-1)(x-7)$
c. $y=(x+1)(x+7)$
d. $y=(x-1)(x+7)$

12. Sketch the graph of a quadratic function which has all of the following properties: concave up, y-intercept is -6 , zeros at $x=-2 \& x=3$.

13. Can you graph a quadratic function which has all of the following properties: concave down, y-intercept is -10 , zeros at $x=-1 \& x=5$. Why or why not?
14. The graph of a quadratic function passes through the points $(1,2),(3,4), \&(5,2)$. Is the graph concave up or concave down?
15. A quadratic function has no zeros and its graph passes through the point (1, 1). Is the graph concave up or concave down?
16. A bridge follows the path described by the function $h(x)=-0.25(x-48)(x-184)$ where $h(x)$ describes the height of the bridge and x is the distance from the nearest building (both in meters). How far from the building does the bridge touch the ground? There will be two answers.
17. The parabola shows the path of your first golf shot, where x is the horizontal distance (in yards) and y is the corresponding height (in yards). The path of your second shot can be modeled by the function $y=-0.02 x(x-80)$. Which shot travels farther before hitting the ground?

