4REV.1~ End of Chapter Review

The grades of six students are given by the formulas below, where time is measured in weeks since the first midterm exam.

- Alex's grade has been decreasing since the first exam. Which formula(s) 1. (a) $G = 85(0.92)^t$ could represent her grade?
- Which student's grade is falling the fastest? At what rate is the grade 2. decreasing?
- Umar's grade has been rising since the first exam. Which formula(s) 3. could represent his grade?
- 4. Which student's grade is rising the fastest? At what rate is the grade rising?
- Karen came out of the first exam with an 85%. Which formula(s) could 5. represent her grade?

14.

- 6. Which function(s) have a value of b > 1?
- 7. Which function(s) have the smallest initial value?
- Which function increases at the slowest rate? 8.
- Which function(s) represent exponential decay? 9.
- 10. Which functions have the same initial value?
- 11. Which function has the smallest *b* value?
- 12. Consider the exponential function $Q(t) = 3.5(1.182)^t 8$ and identif

y-intercept	Increasing or decreasing?	Horizontal asymptote	Range	$\lim_{t\to-\infty}Q(t)$	$\lim_{t\to\infty}Q(t)$

Identify the function as linear or exponential. Write a function equation of the form y = mx + b if linear and $y = a(b)^x$ if exponential.

y

35

29

23

	2	0.4		3	17		3	20	
16. A f	unctio	n grap	h passes through (-1,17	7) & (3	, 3). Fi	nd both a linear function	model	and a	n exponential
fun	ction 1	nodel.	For the exponential functio	n, round	l a to 2	decimal places and b to 3 dec	cimal pl	laces.	-

х

0

1

2

Past due on: Period:

(b) $G = 68(0.95)^t$

(c) $G = 85(1.001)^t$

 $(d) G = 75(1.005)^t$

(e) $G = 93(1.03)^t$

 $(f) G = 72(0.85)^t$

15.

х

0

1

2

у

32

28

24

0	10	
1	2	
2	0.4	
natio	n gran	h passas through (

	/	
y the following characteristics:		

.0(t)

13.

x

 $^{-1}$

0

V

50

10

- 17. At the start of a study, the size of a particular animal population was 5000. Write the proper function formula -P = mt + b, $P = a(b)^t$, or $P = ae^{kt}$ for the size of the population, P, in t years since the start of the study.
 - a. Rising at a rate of 3.85% annually.
 - b. Diminishing at a continuous rate of 16.2% every December 31st.
 - c. Declining at a yearly rate of 15.4%.
 - d. Escalating at a continuous rate of 22% each year.
 - e. Lessening at a constant rate of 40 animals every 52 weeks.
 - f. Climbing at a steady rate of 500 animals every twelve months.
- 18. What are the nominal and effective annual rates of a money market account that pays interest at the rate of 6.4% per year and is compounded monthly? *Round the effective rate to 3 decimal places.*

How much money is in the money market account 10 years later if \$2500 is invested initially?

- 19. Which is better: an account paying 5.3% interest compounded continuously or an account paying 5.4% interest compounding quarterly? *Justify your answer with mathematics*.
- 20. At time t = 0 years, a species of turtle is released into a wetland. When t = 4 years, a biologist estimates there are 300 turtles in the wetland. Three years later, the biologist estimates there are 450 turtles. Find a formula for *P*, the turtle population assuming exponential growth. *Round a to the nearest whole number and b to 3 decimal places.*
- 21. In 2000, the population of Gotham City was 2.925 million. After 15 years, the population had increased by 19.2%.
 - a. What was the population in 2015? Do not round.
 - b. Assuming exponential growth, by what percent did the population of Gotham City grow each year? *Round the rate to 2 decimal places.*
- 22. A 2010 Lexus LS costs \$64,680. The car depreciates a total of 42% during its first 5 years.
 - a. What is the value of the car after five years? *Do not round*.
 - b. Suppose the depreciation is exponential. Find a formula for the value, *V*, of the car *t* years after 2010. *Round b to 3 decimal places*.
 - c. Suppose the depreciation is linear. Find a formula for the value, *V*, of the car *t* years after 2010. *Do not round the slope*.