5.1.D1 ~ Higher-Order Polynomial Functions

Numerical representations of either a linear or quadratic function are shown in a table. Find successive rates of change to determine if the function is linear, quadratic, or cubic. Identify intervals where the function is increasing and/or decreasing and concave up, concave down, or neither.

1. $f(x)$

x	$f(x)$	FIRST DIFFERENCES	SECOND DIFFERENCES	THIRD DIFFERENCES
-4	-48			
-3	-15			
-2	0	-		
-1	3			
0	0			

2. $g(x)$

x	$g(x)$	FIRST DIFFERENCES	SECOND DIFFERENCES	THIRD DIFFERENCES	
1	9				
2	16				
3	21	-			
4	24				
5	25				

3. $g(x)$

x	$g(x)$	FIRST DIFFERENCES	SECOND DIFFERENCES	THIRD DIFFERENCES
1	5			
2	15			
3	25	-		
4	35			
5	45			

4. $h(x)$

x	$g(x)$	FIRST DIFFERENCES	SECOND DIFFERENCES	THIRD DIFFERENCES
1	0			
2	-6	-		
3	-8	-		
4	0			
5	24			

Linear / Quadratic / Cubic
Increasing: \qquad $\leq x \leq$ \qquad
Decreasing: \qquad $\leq x \leq$ \qquad
concave Up Concave Down Neither

Linear / Quadratic / Cubic
Increasing: ___ $\leq x \leq$ \qquad
Decreasing: \qquad $\leq x \leq$ \qquad
concave Up
Concave Down
Neither

Linear / Quadratic / Cubic
Increasing: ___ $\leq x \leq$ \qquad
Decreasing: \qquad $\leq x \leq$ \qquad
concave Up
Concave Down
Neither

Linear / Quadratic / Cubic
Increasing: ___ $\leq x \leq$ \qquad
Decreasing: \qquad $\leq x \leq$ \qquad
concave Up
concave Down
Neither

Sketch the graph of a polynomial function that has the given characteristics.
5. Third degree

As $x \rightarrow \infty, f(x) \rightarrow-\infty$
1 maximum
1 minimum

6. Fourth degree

As $x \rightarrow \infty, f(x) \rightarrow-\infty$
2 maximums
1 minimum
$f(x)=0$ exactly twice

7. Fourth degree

A zero @ 3
Maximum @ $x=2$
Minimum @ $x=-1$

8. Fifth degree

Zeros @ -4, -1, \& 3
Maximum @ $x=-2$

Problems 9-17, use graphs A - D:
A.

B.

C.

D.

9. Which graph(s) are that of an odd-degree polynomial function?
10. Which one of the graphs shows a polynomial function with no maximum or minimum values?
11. Which one of the graphs is that of a function whose range is not $(-\infty, \infty)$?
12. Which one of the graphs has the most turning points/local extrema?
13. Which graph(s) have an end behavior of $\lim _{x \rightarrow-\infty} f(x)=-\infty$?
14. Which graphs have an equal amount of x-intercepts?
15. Which one of the graphs shows that $f(x)$ is a polynomial function with $f(x)=0$ at exactly three different values of x, and $f(x) \rightarrow \infty$ as $x \rightarrow \pm \infty$?
16. Which graphs have only one inflection point?
17. Recall that the graph of a polynomial function of degree n will have at most $n-1$ turning points (local extrema). What is the degree of graph D?

