Chapter 5: Polynomial, Power, & Rational Functions

Name:

5.1.D1 ~ Higher-Order Polynomial Functions

Numerical representations of either a linear or quadratic function are shown in a table. Find successive rates of change to determine if the function is linear, quadratic, or cubic. Identify intervals where the function is increasing and/or decreasing and concave up, concave down, or neither.

1. f(x)

r	f(x)	FIRST	SECOND	THIRD
л)(1)	DIFFERENCES	DIFFERENCES	DIFFERENCES
-4	-48			
-3	-15			
-2	0			
-1	3			
0	0			

2. g(x)

x	g(x)	FIRST DIFFERENCES	SECOND DIFFERENCES	THIRD DIFFERENCES
1	9			
2	16	·		
3	21			
4	24			
5	25			

3. g(x)

x	g(x)	FIRST DIFFERENCES	SECOND DIFFERENCES	THIRD DIFFERENCES
1	5			
2	15			
3	25			
4	35			
5	45			

4. h(x)

x	g(x)	FIRST DIFFERENCES	SECOND DIFFERENCES	THIRD DIFFERENCES
1	0			
2	-6	·		
3	-8			
4	0			
5	24			

Linear / Quadratic / Cubic

Increasing: $\leq x \leq$

Decreasing: $\leq x \leq$

Concave Up

Concave Down

Neither

Linear / Quadratic / Cubic

Increasing: $\leq x \leq$

Decreasing: $\leq x \leq$

Concave Up

. Concave Down Neither

Linear / Quadratic / Cubic

Increasing: $\leq x \leq$

Decreasing: $\leq x \leq$

Concave Up

Concave Down

Neither

Linear / Quadratic / Cubic

Increasing: $\leq x \leq$

Decreasing: $\leq x \leq$

Concave Down

Concave Up

Neither

Sketch the graph of a polynomial function that has the given characteristics.

Problems 9 - 17, use graphs A – D:

- 9. Which graph(s) are that of an odd-degree polynomial function?
- 10. Which one of the graphs shows a polynomial function with no maximum or minimum values?
- 11. Which one of the graphs is that of a function whose range is *not* $(-\infty, \infty)$?
- 12. Which one of the graphs has the most turning points/local extrema?
- 13. Which graph(s) have an end behavior of $\lim_{x \to -\infty} f(x) = -\infty$?
- 14. Which graphs have an equal amount of *x*-intercepts?
- 15. Which one of the graphs shows that f(x) is a polynomial function with f(x) = 0 at exactly three different values of x, and $f(x) \to \infty$ as $x \to \pm \infty$?
- 16. Which graphs have only one inflection point?
- 17. Recall that the graph of a polynomial function of degree n will have at most n 1 turning points (local extrema). What is the degree of graph D?