Chapter 5: Exponential Functions

Name: ____

Past due on: _____ Period: _____

5.1.D2 - Linear VS. exponential functions

Examine the output pattern to determine whether the situation can be represented by linear function or an exponential function. For the linear set, write a linear equation of the form y = mx + b; for the exponential set, write an exponential equation of the form $v = a(b)^x$. (You will need to use the pattern to find the initial values.)

1.	x 1 2 3 4 5 6 y 1 4 7 10 13 16	2.	x 1 y 3	29	3 27	4 81
3.	x 1 2 3 4 5 6 y 2 4 8 16 32 64	4.	x 1 y 3	2 9	3 15	4

Can the situation be represented by a linear function or an exponential function?

- 5. Sebastian deposits \$100,000 in a local bank that will pay out 5% interest every year.
- 6. A certain type of corn grows at the rate of 3 inches per week.
- 7. The Munn Sugar Processing Plant is able to process 10 tons of sugar per month.
- 8. Exercise biologist, Samantha, discovered that to reduce soreness, people should start biceps curls at 10 pounds. Then, progress weekly to 15 pounds, 22.5 pounds, 33.75 pounds and so on.
- 9. The amount of money in Suzie's piggy bank which she adds \$10 to each week.
- 10. The amount of money a certificate of deposit that earns 4% interested each year.

Use the simple and compound interest formula to complete each table. Round to the nearest cent. Refer to the 5.1 example "Comparing Simple & Compound Interest" in the Chapter 5 Summary.

11. Marty has \$8500 to deposit into an account. The interest rate available for the account is 2.4%.

ТІМЕ (YEARS)	SIMPLE INTEREST BALANCE	COMPOUND INTEREST BALANCE
EXPRESSION:	EXPRESSION:	EXPRESSION:
t		
1		
2		
4		
10		
12		

Solve the equation. *Refer to the 2.2 example "Comparing Tables, Equations, and Graphs to Model and Solve Linear Situations" in the Chapter 2 Summary.*

12.
$$8x - 1 = 5x - 13$$
 13. $3(6 - 2x) - 18 = -30$

Solve each system of equations using the linear combinations method. Write your solution as an ordered pair (x, y). Refer to the 6.2 example "Solving a System of Equations Using the Linear Combinations Method" in the Chapter 6 Summary.

x - 2y = 11	2x - 5y = 40
14. $\begin{array}{l} x - 2y = 11 \\ 2x + 5y = 4 \end{array}$	$^{15.} -4x + 3y = -10$

Determine whether the sequence is arithmetic or geometric. Write its explicit formula and use it to determine the 10th term. Write its recursive formula and use it to find the next 3 terms. Lastly, identify the sequence as a linear or exponential function. *Refer to all Chapter 4 examples" in the Chapter 4 Summary.*

	16) 625, 125, 25,	17) 4, -12, 36,	18) – 13, –6, 1,
SEQUENCE TYPE			
EXPLICIT FORMULA			
10 [™] TERM			
RECURSIVE FORMULA			
NEXT 3 TERMS			
LINEAR OR EXPONENTIAL			