\qquad
\qquad Period: \qquad
Describe each type of account as simple interest or compound interest based on the scenario given. Explain your reasoning.

1. Andrew deposits $\$ 300$ into an account that earns 2% interest each year. After the first year, Andrew has $\$ 306$ in the account. After the second year, Andrew has $\$ 312$ in the account.
2. Marilyn deposits $\$ 600$ in an account that earns 1.5% interest each year. After the first year, Marilyn has $\$ 609$ in the account. After the second year, Marilyn has $\$ 618.14$ in the account.

Write a function that represents the balance in the account as a function of time, t, and determine the account balance after 10 years. Refer to the 5.1 examples "Writing \& Solving Simple Interest \& Compound Interest Equations" in the Chapter 5 Summary.
3. Nami deposits $\$ 500$ into a simple interest account. The interest rate for the account is 3%.
4. Leon deposits $\$ 5000$ into a compound interest account. The interest rate for the account is 6%.
5. Emilio deposits $\$ 250$ into a simple interest account. The interest rate for the account is 2.5%.
6. Lea deposits $\$ 450$ into a compound interest account. The interest rate for the account is $5 \cdot 5 \%$.

Use the simple and compound interest formula to complete each table. Round to the nearest cent. Refer to the 5.1 example "Comparing Simple \& Compound Interest" in the Chapter 5 Summary.
7. Javier has $\$ 2300$ to deposit into an account. The interest rate available for the account is 3.75%.

TIME (YEARS)	SIMPLE INTEREST BALANCE	COMPOUND INTEREST BALANCE
EXPRESSION: t	EXPRESSION:	EXPRESSION:
0		
2		
5		
15		
20		

Chapter 5: Exponential Functions

Determine whether the sequence is arithmetic or geometric. Write its explicit formula and use it to determine the $10^{\text {th }}$ term. Write its recursive formula and use it to find the next 3 terms. Lastly, identify the sequence as a linear or exponential function. Refer to all Chapter 4 examples" in the Chapter 4 Summary.

	$8) 7,-21,63, \ldots$	$9) 20,11,2, \ldots$	$10) 243,81,27, \ldots$
SEQUENCE TYPE			
EXPLICIT FORMULA			
$10^{\text {TH }}$ TERM			
RECURSIVE FORMULA			
NEXT 3 TERMS			
LINEAR OR EXPONENTIAL			

Determine the x-intercept and the y-intercept of each equation. Then convert each equation from standard form to slope-intercept form and identify the slope. Refer to examples 3.2 \& 3.3 in the Chapter 3 Summary.

	SLOPE-INTERCEPT FORM	x-INTERCEPT	y-INTERCEPT	SLOPE
$11.15 x+3 y=270$				
$12.12 x-4 y=-480$				

Solve each system of equations using the linear combinations method. Write your solution as an ordered pair (x, y). Refer to the 6.2 example "Solving a System of Equations Using the Linear Combinations Method" in the Chapter 6 Summary.
13. $\begin{aligned} & 2 x-4 y=4 \\ & -3 x+10 y=14\end{aligned}$
14. $\begin{aligned} & -2 x+7 y=13 \\ & 4 x-6 y=-2\end{aligned}$

