\qquad
\qquad Period: \qquad
Write a function that represents each population as a function of time and determine the population after 10 years. Refer to the 5.2 example "Writing \& Solving Equations for Population Problems" in the Chapter 5 Summary.

1. Blueville has a population of 7000 . Its population is decreasing at a rate of 1.4%.
2. Youngstown has a population of 12,000 . Its population is increasing at a rate of 1.2%.
3. Greenlee has a population of 8000 . Its population is decreasing at a rate of 1.75%.
4. North Park has a population of 14,000 . Its population is decreasing at a rate of 3.1%.
5. Springfield has a population of 11,500 . Its population is increasing at a rate of 1.25%.

Use the simple and compound interest formula to complete each table. Round to the nearest cent. Refer to the 5.1 example "Comparing Simple \& Compound Interest" in the Chapter 5 Summary.
6. Pedro has $\$ 1100$ to deposit into an account. The interest rate available for the account is 3.5%.

TIME (YEARS)	SIMPLE INTEREST BALANCE	COMPOUND INTEREST BALANCE
EXPRESSION: t	EXPRESSION:	EXPRESSION:
1		
5		
10		

Solve each compound inequality and graph its solution set. Refer to the 2.4 example "Solving Compound Inequalities" in the Chapter 2 Summary.

$$
\text { 7. }-5+3 x \leq-14 \text { or } 5 x+1>1 \quad \text { 8. }-52 \leq-7 x+4<11
$$

Solve the system of linear equations graphically. Write your solution as an ordered pair (x, y). Refer to the 6.1 example "Predicting the Solution of a System Using Graphing" in the Chapter 6 Summary.
$y=x+4$
9. $y=-\frac{2}{3} x-1$

10. $y=-\frac{1}{2} x+2$ $y=2 x-3$
11.
$8 x+y=-4$
$x+y=3$

Graph each system of linear inequalities. Refer to the 7.2 example "Graphing a System of Linear Inequalities" in the Chapter 7 Summary.
12. $\begin{aligned} & y<4 x+3 \\ & y \leq-2 x-3\end{aligned}$

13. $\begin{aligned} & 2 y<1 x+4 \\ & y \geq 2 x-1\end{aligned}$

14.
$5 x+y>-3$
$x+y>1$

Determine whether the sequence is arithmetic or geometric. Write its explicit formula and use it to determine the $10^{\text {th }}$ term. Write its recursive formula and use it to find the next 3 terms. Lastly, identify the sequence as a linear or exponential function. Refer to all Chapter 4 examples" in the Chapter 4 Summary.

	$15) 16,30,44, \ldots$	$16) 2,-6,18, \ldots$	$17)-1280,320,-80, \ldots$
SEQUENCE TYPE			
EXPLICIT FORMULA			
10TH TERM			
RECURSIVE FORMULA			
NEXT 3 TERMS			
LINEAR OR EXPONENTIAL			

