\qquad
\qquad Period: \qquad
Determine an exponential function of the form $y=a(r \pm 1)^{t}$ that satisfies the given conditions. Refer to the 5.2 example "Writing \& Solving Equations for Population Problems" in the Chapter 5 Summary.

1. Initial value of 5 , increasing at a rate of 17% per year
2. Initial value of 16 , decreasing at a rate of 25% per month
3. Initial value of 5 , decreasing at a rate of 0.59% per week
4. Initial population of 502,000 increasing at a rate of 1.7% per year
5. Initial height of 18 cm , growing at a rate of 5.2% per week
6. Initial mass of 15 grams, decreasing at a rate of 4.6% per day
7. Mina bought a new car for $\$ 22,000$. Each year the car's value decreases by 11%. Write an exponential function that models the value of the car, V, after t years.
8. The enrollment at a school is currently 550 students and is projected to grow at a rate of 8% each year. Write an exponential function that models the enrollment, E, after t years.

Write a function that represents the balance in the account as a function of time, t, and determine the account balance after 10 years. Refer to the 5.1 examples "Writing \& Solving Simple Interest \& Compound Interest Equations" in the Chapter 5 Summary.
9. Serena deposits $\$ 2700$ into a compound interest account. The interest rate for the account is 4.25%.
10. Julian deposits $\$ 5000$ into a simple interest account. The interest rate for the account is 2.75%.

Simplify the product using the product rule. Refer to the Properties of Exponents on your Chapter 5 Summary Sheet.
11) $-9 x^{2} \cdot 8 x^{3}$
12) $5 p \cdot 10 p^{2}$
13) $\left(-2 d^{2}\right)(-13 d)$

Simplify the quotient using the quotient rule. Your answer cannot contain any negative exponents. Refer to the Properties of Exponents on your Chapter 5 Summary Sheet.
14) $\frac{a^{15}}{a^{11}}$
15) $\frac{2 x^{10}}{4 x^{3}}$
16) $\frac{10 m^{8}}{5 m^{5}}$

Define variables and write a system of equations to represent each situation. Solve each system of equations using the appropriate method. Write your solution as an ordered pair (x, y). Refer to the 6.3 example "Writing a Linear System of Equations to Represent a Problem Context" in the Chapter 6 Summary.
17. Mika is buying party favors. She buys a certain number of bracelets and plastic rings. Each plastic ring costs $\$ 0.75$ and each bracelet costs $\$ 1.25$. She bought a total of 20 items and spent $\$ 17.50$. How many of each type of item did Mika buy?

Let $x=$ the number of bracelets $\& y=$ the number of plastic rings.
Equation 1: \qquad \& Equation 2: \qquad
Solve the system of equations.

Interpret the solution of the linear system in terms of the problem situation.
18. Which of the following points is a solution to the linear inequality $4 x-3 y \geq 9$? Circle ALL that apply.

$$
\begin{equation*}
(-2,-6) \quad(-3,-4) \quad(0,0) \quad(0,3) \quad(1,-2) \tag{5,3}
\end{equation*}
$$

19. Which of the following points is a solution to the system of linear inequalities given below? Circle ALL that apply.

$$
\begin{gather*}
4 x-5 y \leq 20 \\
y>2 x-6
\end{gather*} \quad(-2,4) \quad(-1,-5)
$$

Use the given information to write the explicit formula of the arithmetic sequence. The use the explicit formula to find the specified term. Refer to the 4.3 example "Writing Explicit Formulas for Arithmetic \& Geometric Sequences" in the Chapter 4 Summary.
20. $a_{1}=14, d=6$

Find: a_{15}
21. $a_{1}=52, d=-5$

Find: a_{12}
22. $a_{1}=10, d=-4.5$

Find: a_{8}

Use the given information to write the explicit formula of the geometric sequence. The use the explicit formula to find the specified term. Refer to the 4.3 example "Writing Explicit Formulas for Arithmetic \& Geometric Sequences" in the Chapter 4 Summary.
23. $a_{1}=3, r=20$

Find: a_{5}
24. $a_{1}=5000, r=0.2$

Find: a_{9}
25. $a_{1}=2, r=-4$

Find: a_{6}

