\qquad
\qquad Period: \qquad
Determine an exponential function of the form $y=a(r \pm 1)^{t}$ that satisfies the given conditions. Refer to the 5.2 example "Writing \& Solving Equations for Population Problems" in the Chapter 5 Summary.

1. Sales of $\$ 10,000$ increase by 65% each year.
2. A population of 100,000 decreases by 2% each year.
3. Your starting annual salary of $\$ 35,000$ increases by 4% each year.
4. A $\$ 900$ sound system decreases in value by 9% each year.
5. A stock valued at $\$ 100$ decreases in value by 9.5% each year.
6. A population of 210,000 increases by 12.5% each year.
7. An item costs $\$ 4.50$, and its prices increases by 3.5% each year.

Determine whether the table represents exponential growth, exponential decay, or neither.
8.

x	y
-1	50
0	10
1	2
2	0.4

9.

\boldsymbol{x}	\boldsymbol{y}
0	32
1	28
2	24
3	20

10.

x	y
0	35
1	29
2	23
3	17

11.

x	y
1	17
2	51
3	153
4	459

12.

\boldsymbol{x}	\boldsymbol{y}
5	2
10	8
15	32
20	128

13.

\boldsymbol{x}	\boldsymbol{y}
3	432
5	72
7	12
9	2

Simplify the expression using the power rule. Your answer cannot contain any negative exponents. Refer to the Properties of Exponents on your Chapter 5 Summary Sheet.
14. $\left(y^{2}\right)^{3}$
15. $\left(h^{4}\right)^{5}$
16. $\left(p^{-1}\right)^{5}$

Simplify the expression using the power of a product rule. Your answer cannot contain any negative exponents. Refer to the Properties of Exponents on your Chapter 5 Summary Sheet.
17. $\left(3 m^{2}\right)^{4}$
18. $\left(a^{3} b^{2}\right)^{5}$
19. $\left(-2 x^{5}\right)^{4}$

Simplify the expression using the power of a quotient rule. Your answer cannot contain any negative exponents. Refer to the Properties of Exponents on your Chapter 5 Summary Sheet.
20. $\left(\frac{7}{w^{2}}\right)^{3}$
21. $\left(\frac{x^{5}}{3}\right)^{4}$
22. $\left(\frac{a b^{2}}{c^{3}}\right)^{5}$

Complete each table and graph the function. Identify the x-intercept, the y-intercept, asymptote, domain, and range for the function. Refer to the 5.2 example "Graphing \& Analyzing Exponential Functions" in the Chapter 5 Summary.
23. $f(x)=3\left(\frac{1}{2}\right)^{x}$

x	$f(x)$
-2	
-1	
0	
1	
2	

24. $f(x)=-\frac{1}{2}(4)^{x}$

x	$f(x)$
-2	
-1	
0	
1	
2	

x-intercept: \qquad
y-intercept: \qquad
asymptote: \qquad
domain: \qquad
range: \qquad
x-intercept: \qquad y-intercept: \qquad
asymptote: \qquad
domain: \qquad
range: \qquad

Solve the system of linear equations graphically. Write your solution as an ordered pair (x, y). Refer to the 6.1 example "Predicting the Solution of a System Using Graphing" in the Chapter 6 Summary.
25. $\begin{aligned} & x-2 y=6 \\ & 4 x-y=-4\end{aligned}$

26. $\begin{aligned} & y=x+3 \\ & y=7 x-3\end{aligned}$

27. $\begin{aligned} & y=-2 x+2 \\ & 1 x+2 y=-2\end{aligned}$

