$\qquad$

### 5.2.13 ~ Power Functions \& Their Graphs

$\qquad$ Period: $\qquad$


If necessary, rewrite the function so that it is in the form $f(x)=k x^{a}$, then, state the values of the constants $k$ and $a$. Match the portion of the curve that lies in Quadrant I or Quadrant IV and identify a point the graph contains and whether it passes through the origin or is asymptotic to both axes. Describe the end behavior.

1. $f(x)=-\frac{2}{3} x^{4}$
$k=$ $\qquad$ , $a=$ $\qquad$
CURVE: $\qquad$ CONTAINS THE POINT: $\qquad$
PASSES THROUGH $(0,0)$ ASYMPTOTIC TO BOTH AXES
2. $f(x)=-2 x^{-2}$
$k=$ $\qquad$ , $a=$ $\qquad$
CURVE: $\qquad$ CONTAINS THE POINT: $\qquad$
PASSES THROUGH $(0,0)$ ASYMPTOTIC TO BOTH AXES
3. $f(x)=2 \sqrt[4]{x}$

REWRITE IN THE FORM $k x^{a} \quad k=$ $\qquad$ , $a=$ $\qquad$ CURVE: $\qquad$ CONTAINS THE POINT: $\qquad$

$$
\lim _{x \rightarrow-\infty} f(x)=
$$

$\qquad$
PASSES THROUGH $(0,0)$ ASYMPTOTIC TO BOTH AXES

$$
\lim _{x \rightarrow \infty} f(x)=
$$

$\qquad$
4. $f(x)=\frac{1}{2 x^{5}}$

REWRITE IN THE FORM $k x^{a} \quad k=$ $\qquad$ , $a=$ $\qquad$
CURVE: $\qquad$ CONTAINS THE POINT: $\qquad$

$$
\lim _{x \rightarrow-\infty} f(x)=
$$

$\qquad$
PASSES THROUGH $(0,0)$ ASYMPTOTIC TO BOTH AXES

$$
\lim _{x \rightarrow \infty} f(x)=
$$

$\qquad$
5. $f(x)=-4 \sqrt[3]{x}$

REWRITE IN THE FORM $k x^{a} \quad k=$ $\qquad$ , $a=$ $\qquad$
CURVE: $\qquad$ CONTAINS THE POINT: $\qquad$ $\lim _{x \rightarrow-\infty} f(x)=$ $\qquad$
PASSES THROUGH $(0,0)$ ASYMPTOTIC TO BOTH AXES

$$
\lim _{x \rightarrow \infty} f(x)=
$$

$\qquad$
6. $f(x)=\frac{2}{5} \sqrt{x^{8}}$

REWRITE IN THE FORM $k x^{a} \quad k=$ $\qquad$
CURVE: $\qquad$ CONTAINS THE POINT: $\qquad$ $\lim _{x \rightarrow-\infty} f(x)=$ $\qquad$
PASSES THROUGH $(0,0)$ ASYMPTOTIC TO BOTH AXES
$\lim _{x \rightarrow \infty} f(x)=$ $\qquad$
7. $f(x)=x^{-4} \cdot 6 x^{3}$

REWRITE IN THE FORM $k x^{a} \quad k=$ $\qquad$ , $a=$ $\qquad$ CURVE: $\qquad$ CONTAINS THE POINT: $\qquad$ $\lim _{x \rightarrow-\infty} f(x)=$ $\qquad$
PASSES THROUGH $(0,0)$ ASYMPTOTIC TO BOTH AXES
$\lim _{x \rightarrow \infty} f(x)=$ $\qquad$
8. $f(x)=-8 x^{-1} \cdot \sqrt[3]{x^{2}}$

REWRITE IN THE FORM $k x^{a} \quad k=$ $\qquad$ , $a=$
CURVE: $\qquad$ CONTAINS THE POINT: $\qquad$
PASSES THROUGH $(0,0)$ ASYMPTOTIC TO BOTH AXES
$\lim _{x \rightarrow-\infty} f(x)=$ $\qquad$ $\lim _{x \rightarrow \infty} f(x)=$ $\qquad$
9. $f(x)=\frac{x^{-1}(2 x)^{4}}{-x^{2}}$

REWRITE IN THE FORM $k x^{a} \quad k=$ $\qquad$ , $a=$ $\qquad$
CURVE: $\qquad$ CONTAINS THE POINT: $\qquad$ $\lim _{x \rightarrow-\infty} f(x)=$ $\qquad$
PASSES THROUGH $(0,0)$ ASYMPTOTIC TO BOTH AXES
$\lim _{x \rightarrow \infty} f(x)=$ $\qquad$
10. $f(x)=\frac{-3 x^{4}}{(\sqrt{x})^{4}}$

REWRITE IN THE FORM $k x^{a} \quad k=$ $\qquad$ , $a=$ $\qquad$
CURVE: $\qquad$ CONTAINS THE POINT: $\qquad$ $\lim _{x \rightarrow-\infty} f(x)=$ $\qquad$
PASSES THROUGH $(0,0)$ ASYMPTOTIC TO BOTH AXES $\lim _{x \rightarrow \infty} f(x)=$ $\qquad$

