~

Name: _____

Past due on: _____ Period: _____

5.2.D3 ~ Power Functions & Their Graphs

If necessary, rewrite the function so that it is in the form $f(x) = kx^a$, then, state the values of the constants k and a. Match the portion of the curve that lies in Quadrant I or Quadrant IV and identify a point the graph contains and whether it passes through the origin or is asymptotic to both axes. Describe the end behavior.

1. $f(x) = -\frac{2}{3}x^4$	k = , $a =CURVE: CONTAINS THE POINT:PASSES THROUGH (0,0) ASYMPTOTIC TO BOTH AXES$	$\lim_{x \to -\infty} f(x) = \underline{\qquad}$ $\lim_{x \to \infty} f(x) = \underline{\qquad}$
2. $f(x) = -2x^{-2}$	k =, a = CURVE: CONTAINS THE POINT: PASSES THROUGH (0,0) ASYMPTOTIC TO BOTH AXES	$\lim_{x \to -\infty} f(x) = \underline{\qquad}$ $\lim_{x \to \infty} f(x) = \underline{\qquad}$
3. $f(x) = 2\sqrt[4]{x}$		
REWRITE IN THE FORM kx^a	k = , $a =CURVE: CONTAINS THE POINT:PASSES THROUGH (0,0) ASYMPTOTIC TO BOTH AXES$	$\lim_{x \to -\infty} f(x) = \underline{\qquad}$ $\lim_{x \to \infty} f(x) = \underline{\qquad}$
4. $f(x) = \frac{1}{2x^5}$ Rewrite in the form kx^a	<i>k</i> =, <i>a</i> =	
	CURVE: CONTAINS THE POINT: PASSES THROUGH $(0,0)$ ASYMPTOTIC TO BOTH AXES	$\lim_{x \to -\infty} f(x) = \underline{\qquad}$ $\lim_{x \to \infty} f(x) = \underline{\qquad}$
5. $f(x) = -4\sqrt[3]{x}$		
REWRITE IN THE FORM kx^a	k = , $a =CURVE: CONTAINS THE POINT:PASSES THROUGH (0,0) ASYMPTOTIC TO BOTH AXES$	$\lim_{x \to -\infty} f(x) = \underline{\qquad}$ $\lim_{x \to \infty} f(x) = \underline{\qquad}$

		· · · • • • • •
6. $f(x) = \frac{2}{5}\sqrt{x^8}$		
REWRITE IN THE FORM kx^a	k = , $a =CURVE: CONTAINS THE POINT:PASSES THROUGH (0,0) ASYMPTOTIC TO BOTH AXES$	$\lim_{x \to -\infty} f(x) = \underline{\qquad}$ $\lim_{x \to \infty} f(x) = \underline{\qquad}$
7. $f(x) = x^{-4} \cdot 6x^3$ REWRITE IN THE FORM kx^a	k = , $a =CURVE: CONTAINS THE POINT:PASSES THROUGH (0, 0) ASYMPTOTIC TO BOTH AXES$	$\lim_{x \to -\infty} f(x) = \underline{\qquad}$ $\lim_{x \to \infty} f(x) = \underline{\qquad}$
8. $f(x) = -8x^{-1} \cdot \sqrt[3]{x^2}$ Rewrite in the form kx^a	k = , $a =CURVE: CONTAINS THE POINT:PASSES THROUGH (0,0) ASYMPTOTIC TO BOTH AXES$	$\lim_{x \to -\infty} f(x) = \underline{\qquad}$ $\lim_{x \to \infty} f(x) = \underline{\qquad}$
9. $f(x) = \frac{x^{-1}(2x)^4}{-x^2}$ Rewrite in the form kx^a	k = , $a =CURVE: CONTAINS THE POINT:PASSES THROUGH (0,0) ASYMPTOTIC TO BOTH AXES$	$\lim_{x \to -\infty} f(x) = \underline{\qquad}$ $\lim_{x \to \infty} f(x) = \underline{\qquad}$
10. $f(x) = \frac{-3x^4}{(\sqrt{x})^4}$ Rewrite in the form kx^a	k = , $a =CURVE: CONTAINS THE POINT:PASSES THROUGH (0,0) ASYMPTOTIC TO BOTH AXES$	$\lim_{x \to -\infty} f(x) = \underline{\qquad}$ $\lim_{x \to \infty} f(x) = \underline{\qquad}$