\qquad
\qquad Period: \qquad
Determine an exponential function of the form $y=a(r \pm 1)^{t}$ that satisfies the given conditions. Refer to the 5.2 example "Writing \& Solving Equations for Population Problems" in the Chapter 5 Summary.

1. The cost of tuition at a college is $\$ 12,000$ and is increasing at a rate of 6% per year.
2. The value of a car is $\$ 18,000$ and is depreciating at a rate of 12% per year.
3. The amount of a $10-\mathrm{mg}$ dose of a certain antibiotic decreases in your bloodstream at a rate of 16% per hour.
4. The number of student-athletes at a local high school is 300 and is increasing at a rate of 8% per year.
5. The new savings account starts at $\$ 700$ and increases at 1.2% yearly.
6. The value of a book is $\$ 58$ and decreases at a rate of 10% per year.

Each coordinate plane shows the graph of $f(x)$. Sketch the graph of $g(x)$. Identify the y-intercept, asymptote, domain, and range for the function. Refer to the 5.2 example "Graphing \& Analyzing Exponential Functions" and the 5.3 example "Translating Linear \& Exponential Functions in Terms of the Basic Function" in the Chapter 5 Summary.
7. $g(x)=f(x)+4$

y-intercept: \qquad
asymptote: \qquad
domain: \qquad
range: \qquad
y-intercept: \qquad
asymptote: \qquad
domain: \qquad
range: \qquad

Chapter 5: Exponential Functions

Each graph shows the function $g(x)$ as a translation of the function $f(x)$. Write the equation of $g(x)$.
9.

10.

Examine the output pattern to determine whether the situation can be represented by linear function or an exponential function.
11.

\boldsymbol{x}	-1	0	1	2	3
\boldsymbol{y}	-1	-0.5	0	0.5	1

12.

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	$\frac{1}{5}$	1	5	25	125

13.

\boldsymbol{x}	1	2	3	4	5
\boldsymbol{y}	512	128	32	8	2

14.

\boldsymbol{x}	-5	-4	-3	-2	-1
\boldsymbol{y}	12	9	6	3	0

Write an exponential function of the form $y=a(b)^{x}$.

15.	x	-2	-1	0	1	2
	y	1	2	4	8	16

17.

x	-2	-1	0	1	2
y	$\frac{1}{81}$	$\frac{1}{27}$	$\frac{1}{9}$	$\frac{1}{3}$	1

18.

x	-2	-1	0	1	2
y	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2

Simplify the expression using the product/power rules. Your answer cannot contain any negative exponents. Refer to the Properties of Exponents on your Chapter 5 Summary Sheet.
19. $\left(-2 x y^{4} z^{2}\right)^{3}$
20. $(4 x y z)\left(x^{2} y^{3}\right)$
21. $\left(4 a^{2}\right)\left(-2 a^{3}\right)^{4}$

