\qquad
5.3.D2 - TRANSLATIONS OF EXPONENT:AL FUNCT: ONS

Past due on: \qquad Period: \qquad
Each coordinate plane shows the graph of $f(x)$. Sketch the graph of $g(x)$. Identify the asymptote, domain, and range for the function. Refer to the 5.2 example "Graphing \& Analyzing Exponential Functions" and the 5.3 example "Translating Linear \& Exponential Functions in Terms of the Basic Function" in the Chapter 5 Summary.

1. $g(x)=f(x-3)$
2. $g(x)=f(x+4)$

asymptote: \qquad
domain: \qquad
range: \qquad -
asymptote:
domain:
range: \qquad

\qquad
\qquad

Each graph shows the function $g(x)$ as a translation of the function $f(x)$. Write the equation of $g(x)$.
3.

4.

5. The points $(-5,0),(-3,4),(0,7) \&(1,9)$ are on the graph of f. The graph of g is the translation of the graph of f shifted down 4 units and right 1 unit.
a. Represent the translation using coordinate notation: $(x, y) \rightarrow$ \qquad
b. What points are on the graph of g ?
$(-9,1)$
$(-4,-4)$
$(-3,8)$
$(-2,0)$
6. Let $(3,-4)$ be a point on the graph of f and let $g(x)=f(x-3)+5$. What is a point on the graph of g ? Explain how you found your answer.
7. Let $f(x)=6^{x}$. Represent the translation using coordinate notation and write an equation for g for each translation of f described in the table.

Translation of f	Coordinate notation of g	Equation of g
Shift up 5 units		
Shift down 3 units		
Shift left 2 units		
Shift right 4 units		
Shift up 8 units and left 3 units		
Shift down 4 units and right 7 units		

Compare the graphs of $f(x) \& g(x)$. Find the value of h or k.
8.

9.

10.

Write a system of inequalities to represent each situation. Refer to the 7.2 example "Writing a System of Linear Inequalities" in the Chapter 7 Summary.
11. A surf shop makes $\$ 150$ per surfboard and $\$ 100$ per wakeboard and has a sales goal of at least $\$ 2000$ in a month. The shop owner sells at least 30 boards each month. Let $x=$ the number of surfboards and $y=$ the number of wakeboards.

Inequality 1 : \qquad \& Inequality 2: \qquad
12. At her party, Alice is serving pepper jack cheese and cheddar cheese. She wants to have at least 4 pounds of cheese. Pepper jack cheese costs $\$ 4 /$ pound and cheddar cheese costs $\$ 2 /$ pound and Alice has at most $\$ 20$ to spend on cheese. Let $x=$ the pounds of pepper jack cheese and $y=$ the pounds of cheddar cheese.

Inequality 1 : \qquad \& Inequality 2: \qquad
13. Pablo's pickup truck can carry a maximum of 1000 pounds. He is loading his truck with 20 -pound bags of cement and 8o-pound bags of cement. He hopes to load at least 10 bags of cement into his truck. Let $x=$ the number of 20-pound bags of cement \& let $y=$ the number of 8o-pound bags of cement.
Inequality 1: \qquad \& Inequality 2: \qquad

