\qquad
\qquad Period \qquad
Write the rational function in its factored form. Then analyze each rational function for its long-run behavior (end behavior and horizontal asymptote) and its short-run behavior (intercepts, vertical asymptote, and holes). Write DNE if the function doesn't have a particular property. Then match the function to its graph (below).

1. $f(x)=\frac{2 x}{x^{2}-4}$
Graph: \qquad

$\lim _{x \rightarrow-\infty} f(x)=$	$\lim _{x \rightarrow \infty} f(x)=$	Horizontal asymptote: $y=$	y-intercept:
Vertical asymptote:	x-intercept:	Hole:	Domain: $x=$

2. $f(x)=\frac{x^{2}+2 x}{x^{2}-4}$

Graph: \qquad

$\lim _{x \rightarrow-\infty} f(x)=$	$\lim _{x \rightarrow \infty} f(x)=$	Horizontal asymptote: $y=$	y-intercept:
Vertical asymptote:	x-intercept:	Hole:	Domain: $x=$

3. $f(x)=\frac{x^{2}+2}{x^{2}-x-2}$

Graph: \qquad

$\lim _{x \rightarrow-\infty} f(x)=$	$\lim _{x \rightarrow \infty} f(x)=$	Horizontal asymptote: $y=$	-intercept:
Vertical asymptote:	x-intercept:	Hole:	Domain: $x=$

Find a possible formula for the rational function graphed or described.
4.

5.

6.

7. Determine which rational function has a graph that crosses the x-axis at -1 , touches the x-axis at -4 , has vertical asymptotes at $x=-2 \& x=3$, and has a horizontal asymptote at $y=-2$.
$A(x)=\frac{-(x+1)(x+4)^{2}}{2(x-2)^{2}(x+3)}$
$B(x)=\frac{-2(x+1)(x+4)^{2}}{(x+2)^{2}(x-3)}$
$C(x)=\frac{-2(x-3)(x+2)^{2}}{(x+4)^{2}(x+1)}$
$D(x)=\frac{-2(x+1)(x+4)}{(x+2)(x-3)}$
8. The function has x-intercepts at $x=-3 \& x=2$. It has vertical asymptotes at $x=-5 \& x=7$ and a horizontal asymptote at $y=-1$.
10. The function has a vertical asymptote at $x=-1$ and a horizontal asymptote at $y=1$. The graph intersects the y-axis at $y=3 \&$ crosses the x-axis once at $x=-3$.
12. The function has a horizontal asymptote at $y=1$ and two vertical asymptotes at $x=-3 \& x=4$. The graph touches the x-axis once at $x=10$.
14. The function has a vertical asymptote at $x=3$, a horizontal asymptote at $y=0$, a y-intercept of ($0,-1$), and no x-intercept.
9. The function has x-intercepts at $x=8 \& x=1$. It has a vertical asymptote at $x=5$ and a horizontal asymptote at $y=-3$.
11. The function has a horizontal asymptote at $y=0$ and two vertical asymptotes at $x=-4 \& x=9$. The graph crosses the x-axis once at $x=3$.
13. The function has an x-intercept at $x=1$, a vertical asymptote at $x=-5$, a hole at $x=-2$, and a horizontal asymptote at $y=2$.
15. The function has no horizontal asymptote; one vertical asymptote at $x=-5$, \& it touches the x-axis at $(0,0)$.

