Chapter 5: Triangles & Congruence

Name: ____

Are the triangles congruent? If so, identify the congruence theorem that would prove it.

4. Given: $\overline{AE} \& \overline{BD}$ are altitudes, \overline{AE} is also a median; $m \angle CAB = 80^\circ, m \angle CBA = 60^\circ, CE = x^2 - 56, BE = x$

Past due on: Period

5. Given: $m \angle P = 10^\circ$; \overline{RM} is an altitude; \overrightarrow{RO} bisects $\angle MRP$ Find: $m \angle ORP \& m \angle MOR$

- 6. Given: $\overline{AE} \& \overline{BD}$ are medians; BC = 6y + 10, $AB = y^2 + 3y$,
 - CE = 6x + 12, ED = 2x + 60
 - a. Find the values of *x* and *y*.
 - b. Find the range of possible lengths for side \overline{AD} . (You may want to refer to Lesson 5.1)

v + 5

a. Set up and solve a system of equations to find the values of *x* and *y*.

7. Given: \overline{RS} is an altitude; $m \angle SRT = 4x - 8$; $m \angle STR = 6x + 13$

b. Use the Pythagorean Theorem to find the length of the third side.

Find the value of *x*.

9.	Given: $\triangle SRV \cong \triangle KRV$ a. Set up and solve a system of equations to find the values of $x \& y$. $2x \bigvee_{x \to y \to y} 3y + 8$	
	b $m/S = 0n^2$ 22n & $m/K = 4n^2$ 9. Set up and solve a quadratic equation to find the value	

b. $m \angle S = 9n^2 - 22n \& m \angle K = 4n^2 - 8$. Set up and solve a quadratic equation to find the value of *n* that makes sense. Then find $m \angle SRV$.

10.	Given: Prove:	\overline{GJ} is an altitude & a median $\triangle HGJ \cong \triangle KGJ$	G
STAT	EMENTS		REASONS
11.	Given:	$\overline{AE} \cong \overline{CF}$ $\overline{DC} \cong \overline{BA}$ $(BEA \approx (DEC \text{ one right } (a)$	D C
	Prove:	$\triangle CDE \cong \triangle ABF$	AEB
STAT	Prove: EMENTS	$\triangle CDE \cong \triangle ABF$	REASONS

16. Find the indicated angle measures.

