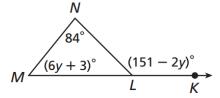
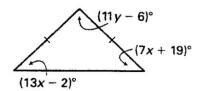
5.REV.1 ~ End of Chapter Review Past due on: ______ Period ____

Tell whether a triangle can have sides with the given lengths. Explain your reasoning.

1. 39, 19, 46

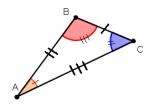

2. 5.0, 2.9, 3.8

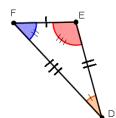
The lengths of two sides of a triangle are given. Find the range of possible lengths for the third side.


3. 9 & 19

4. 8 & 13

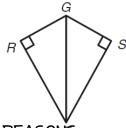
5. Use the Exterior Angle Theorem to set up and solve an equation to find the value of y.




- 6. Order the sides of $\triangle LMN$ from shortest to longest.
- 7. The triangle shown is isosceles. Set up and solve equations to find the values of x and y. No system of equations is needed.

8. $\angle 1$ and $\angle 2$ are two base angles of an isosceles triangle; $m \angle 1 = 5x^2 + 42x - 30$ and $m \angle 2 = -5x$. Set up and solve a quadratic equation and find the value of x (that makes sense). Then find $m \angle 3$, the vertex angle.

9. $\triangle ABC \cong \triangle DEF$, $m \angle B = 98^\circ$, $m \angle C = 22^\circ$, $m \angle D = 3x - y$, and $m \angle F = -10x - 9y$. Set up and solve a system of equations to find the values of x and y.

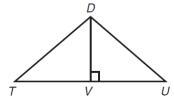


Complete each proof.

10. Given: \overline{GF} bisects $\angle RGS$

 $\angle R \& \angle S$ are right angles

Prove: $\triangle FRG \cong \triangle FSG$

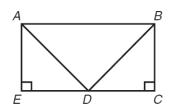

STATEMENTSREASONS1. \overline{GF} bisects $\angle RGS$ 1. Given2.2.3. $\angle R \& \angle S$ are right angles3. Given4.4.55

5.5.6. $\triangle FRG \cong \triangle FSG$ 6.

11. Given: \overline{DV} is an altitude & a

median of $\triangle TDU$

Prove: $\triangle DVT \cong \triangle DVU$

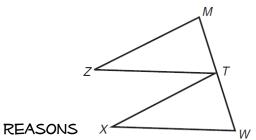

STATEMENTS	REASONS
1. \overline{DV} is an altitude & a median of $\triangle TDU$	1. Given
2.	2.
3.	3.
4.	4.
5.	5.
$6. \ \triangle DVT \cong \triangle DVU$	6.

12. Given: D is the midpoint of \overline{EC}

 $\triangle ADB$ is isosceles with base \overline{AB}

 $\angle E \& \angle C$ are right angles

Prove: $\triangle AED \cong \triangle BCD$


STATEMENTS	REASONS
1. D is the midpoint of \overline{EC}	1. Given
2.	2.
3. $\triangle ADB$ is isosceles with base \overline{AB}	3. Given
4.	4.
5. $\angle E \& \angle C$ are right angles	5. Given
6.	6.
7. $\triangle AED \cong \triangle BCD$	7.

13. Given: $\overline{TZ} \cong \overline{WX}$

 $\overline{TM}\cong \overline{WT}$

 $\overline{TZ} \parallel \overline{WX}$

Prove: $\overline{MZ} \cong \overline{TX}$

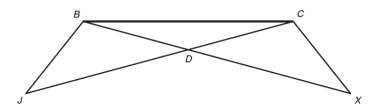
STATEMENTS

1. $\overline{TZ} \cong \overline{WX}$ 1. Given

2. $\overline{TM} \cong \overline{WT}$ 2. Given

3. $\overline{TZ} \parallel \overline{WX}$ 3. Given

4.

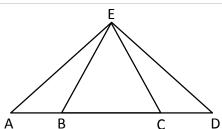

5. 5.

6. $\overline{MZ} \cong \overline{TX}$

14. Given: $\overline{JD} \cong \overline{XD}$

 $\angle J \cong \angle X$

Prove: $\overline{BD} \cong \overline{CD}$

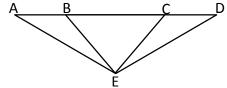

STATEMENTS	REASONS
1. $\overline{JD} \cong \overline{XD}$	1. Given
$2. \ \angle J \cong \angle X$	2. Given
3.	3.
4.	4.
5. $\overline{BD} \cong \overline{CD}$	5.

15. Given: $\angle AEC \cong \angle DEB$

 $\overline{BE}\cong\overline{CE}$

 $\angle A \cong \angle D$

Prove: $\triangle ABE \cong \triangle DCE$



STATEMENTS	REASONS
1. $\angle AEC \cong \angle DEB$	1. Given
2. $\overline{BE} \cong \overline{CE}$	2. Given
3. $\angle A \cong \angle D$	3. Given
4.	4.
5.	5.
$6. \ \triangle ABE \cong \triangle DCE$	6.

16. Given: $\angle AEC \cong \angle DEB$

 $\overline{AE}\cong \overline{DE}$

Prove: $\triangle ACE \cong \triangle DBE$

STATEMENTS	REASONS
$1. \ \angle AEC \cong \angle DEB$	1. Given
2. $\overline{AE} \cong \overline{DE}$	2. Given
3.	3.
$4. \ \triangle ACE \cong \triangle DBE$	4.