\qquad

5.REV. 4 - Rational Functions

\qquad Period: \qquad
For each rational function, compare the degrees of the numerator and denominator and then find the end behavior and the horizontal asymptote.

1. $f(x)=\frac{4 x+3 x^{3}}{4 x^{2}+3 x}$

$$
\lim _{x \rightarrow-\infty} f(x)=\quad \lim _{x \rightarrow \infty} f(x)=
$$

Horizontal asymptote:
$y=$
2. $f(x)=\frac{3 x^{2}+x}{2 x^{2}+5 x^{3}}$

$$
\lim _{x \rightarrow-\infty} f(x)=\quad \lim _{x \rightarrow \infty} f(x)=
$$

Horizontal asymptote:
4. $f(x)=\frac{-x^{2}}{x+5}$

Horizontal asymptote:
$\lim _{x \rightarrow-\infty} f(x)=\quad \lim _{x \rightarrow \infty} f(x)=$
$y=$

$$
\lim _{x \rightarrow-\infty} f(x)=\quad \lim _{x \rightarrow \infty} f(x)=
$$

Horizontal asymptote:
6. $f(x)=\frac{2 x-4 x^{2}}{x^{2}-4 x+8}$

$$
\lim _{x \rightarrow-\infty} f(x)=\quad \lim _{x \rightarrow \infty} f(x)=\quad \begin{aligned}
& \text { Horizo } \\
& y=
\end{aligned}
$$

Write the rational function in its factored form. Analyze each rational function for its long-run behavior (end behavior and horizontal asymptote) and its short-run behavior (intercepts, vertical asymptote, and holes). Write DNE if the function doesn't have a particular property.
7.
$f(x)=\frac{-4 x+12}{x^{2}-x-6}$

$\lim _{x \rightarrow-\infty} f(x)=$	$\lim _{x \rightarrow \infty} f(x)=$	Horizontal asymptote: $y=$	y-intercept:
Vertical asymptote:	x-intercept:	Hole:	Domain: $x=$

8.

$f(x)=\frac{3 x^{2}-3 x-6}{x^{2}-2 x-3}$

$\lim _{x \rightarrow-\infty} f(x)=$	$\lim _{x \rightarrow \infty} f(x)=$	Horizontal asymptote: $y=$	y-intercept:
Vertical asymptote: $x=$	x-intercept:	Hole:	Domain: $x \neq$

Find a possible formula for the rational function.
9.

10.

11. The graph crosses the x-axis at 2 , touches the x axis at -1 ; vertical asymptotes at $x=-5 \& x=6$; a horizontal asymptote at $y=3$; the y-intercept is ($0,0.04$).
12. There is a hole at $x=2$, a zero at $x=3$, a vertical asymptote at $x=-1$, and a horizontal asymptote at $y=1$.

Write the rational function in its factored form. Then analyze the rational function for its long-run behavior (horizontal asymptote) and its short-run behavior (intercepts, vertical asymptote, and holes). Write DNE if the function doesn't have a particular property. Lastly, sketch its graph.
13. $f(x)=\frac{-2 x-2}{x-3}$

Horizontal asymptote $y=$	4-intercept:	Domain: $x \neq$
Hole:	x-intercept(s):	vertical asymptote: $x=$

15. $f(x)=\frac{3 x^{2}+6 x-24}{3 x^{2}-9 x+6}$

Horizontal asymptote $y=$	4-intercept:	Domain: $x \neq$
Hole:	x-intercept(s):	Vertical asymptote: $x=$

14. $f(x)=\frac{x^{2}-4 x}{x^{2}-3 x}$

Horizontal asymptote $y=$	y-intercept:	Domain: $x \neq$
Hole:	x-intercept(s):	Vertical asymptote: $x=$

16. $f(x)=\frac{2 x^{3}-18 x}{x^{3}+x^{2}-6 x}$

Horizontal asymptote	y-intercept:	Domain:
Hole:	$x \neq$	
	x-intercept(s):	
		$x=$

