\qquad

6.2.D1 - LiNEAR COMBENATIONS METHOD

Past due on: \qquad Period: \qquad
Solve each system of equations using the linear combinations method. Write your solution as an ordered pair (x, y). Refer to the 6.2 example "Solving a System of Equations Using the Linear Combinations Method" in the Chapter 6 Summary.

1. $3 x+5 y=8$
. $2 x-5 y=22$
2. $x+2 y=6$
3. $2 x+2 y=12$

$$
x_{0}
$$

3. $\begin{aligned}-3 x-8 y & =-29 \\ 7 x+8 y & =25\end{aligned}$
4. $\begin{aligned} & 3 x-6 y=9 \\ & 3 x-9 y=30\end{aligned}$

Define variables and write an equation to represent each situation. Refer to the 3.2 example "Writing \& Solving a Function in Two Variables" in the Chapter 3 Summary.
5. A football team scores 63 points. All of the points come from field goals worth 3 points and touchdowns (with successful extra-point attempts) worth 7 points. Write a linear equation in standard form to represent the combination of field goals and touchdowns the team could have scored.
Let $x=$ \qquad $\& y=$ \qquad
Equation: \qquad
6. You have only nickels and dimes in your piggy bank. When you ran the coins through a change counter, it indicated you have 595 cents. Write an equation to represent the combinations of nickels and dimes you could have.
Let $x=$ \qquad $\& y=$ \qquad
Equation: \qquad
7. You work two jobs. At the first job, you earn $\$ 10$ per hour. At the second job, you earn $\$ 12$ per hour. You earned $\$ 440$ last week. Write an equation to represent the combinations of hours you could have worked at each job.
Let $x=$ \qquad $\& y=$ \qquad
Equation: \qquad

The problem situation can be represented by a system of linear equations. Solve the system using substitution. Refer to the 6.1 example "Predicting the Solution of a System Using Graphing" in the Chapter 6 Summary.
8. One satellite radio service charges $\$ 10$ per month plus an activation fee of $\$ 20$. A second service charges $\$ 11$ per month plus an activation fee of $\$ 15$. After how many months was the cost the same? Let $x=$ the number of months.
a. Write an equation that represents the total cost with the $1^{\text {st }}$ service: $y=$ \qquad
b. Write an equation that represents the total cost with the $2^{\text {nd }}$ service: $y=$ \qquad
c. Graph the system of equations and estimate the breakeven point.

d. Explain what the break-even point represents with respect

Number of Months to the given problem situation.

Solve each system of equations by substitution. Write your solution as an ordered pair (x, y). Refer to the 6.1 example "Solving Systems of Linear Equations Using the Substitution Method" in the Chapter 6 Summary.
9. $6 y=2 x-14$
$x-7=3 y$
10. $2 x=3-y$
$y=4 x-12$

Determine the x-intercept and the y-intercept of each equation. Then convert each equation from standard form to slope-intercept form and identify the slope. Refer to the 3.2 example "Identify the x Intercept and y-Intercept of an Equation w / T wo Variables" and the 3.3 example "Converting Equations between Standard Form and Slope-Intercept Form" in the Chapter 3 Summary.

[^0]x-intercept: \qquad y-intercept: \qquad Slope: \qquad
SLOPE-INTERCEPT FORM:
12. $6 x-5 y=-23$
x-intercept: \qquad y-intercept: \qquad Slope: \qquad

[^0]: 11. $5 x-3 y=21$
