Name:

Past due on: _____ Period:

6.6.D1 - QUADRILATERALS IN THE COORDINATE PLANE

Graph the quadrilateral described. Determine the most precise name for the quadrilateral: rectangle, rhombus, square, kite, or trapezoid AND justify your reasoning. <u>Show all work on a separate sheet of paper</u>.

Use the given information to determine if quadrilateral *ABCD* can best be described as a rectangle, square, rhombus, trapezoid, or none of these. Explain your reasoning.

- 3. Side lengths: $AB = \sqrt{20}, BC = \sqrt{45}, CD = \sqrt{20}, DA = \sqrt{45}$ Slope of $\overline{AB} = -2$ Slope of $\overline{BC} = \frac{1}{2}$ Slope of $\overline{CD} = -2$ Slope of $\overline{DA} = \frac{1}{2}$ 4. Side lengths: $AB = \sqrt{13}, BC = \sqrt{13}, CD = \sqrt{13}, DA = \sqrt{13}$ Slope of $\overline{AB} = -\frac{3}{2}$ Slope of $\overline{BC} = 1$ Slope of $\overline{CD} = -\frac{3}{2}$ Slope of $\overline{DA} = 1$ 5. Side lengths: $AB = \sqrt{13}, BC = \sqrt{17}, CD = \sqrt{52}, DA = \sqrt{10}$ Slope of $\overline{AB} = \frac{2}{3}$ Slope of $\overline{BC} = -\frac{1}{4}$ Slope of $\overline{CD} = \frac{2}{3}$ Slope of $\overline{DA} = -3$ 6. Side lengths: $AB = \sqrt{14}, BC = \sqrt{14}, CD = \sqrt{14}, DA = \sqrt{14}$
 - Slope of $\overline{AB} = \frac{1}{8}$ Slope of $\overline{CD} = \frac{1}{8}$ Slope of $\overline{DA} = -8$

Chapter 6: Quadrilaterals

7. The coordinates of the vertices of parallelogram *ABCD* are A(-3, 2), B(-2, -1), C(4, 1), & D(3, 4). The slopes of which line segments could be calculated to show that *ABCD* is a rectangle?

A	$\overline{AB} \otimes \overline{DC}$	R)	$\overline{AB} \otimes \overline{BC}$	()	$\overline{AD} \otimes \overline{BC}$	ית	$\overline{AC} \otimes \overline{I}$	\overline{RD}
л	$\int AD \otimes DC$	ן ע	AD & DC	C)	$AD \otimes DC$	ν	ΓΑυαι	ענ

- 8. Parallelogram *ABCD* has coordinates *A*(0,7) & *C*(2,1). Which statement would prove that *ABCD* is a rhombus?
 - *A)* The midpoint of \overline{AC} is (1, 4).
 - B) The length of \overline{BD} is $\sqrt{40}$.
 - C) The slope of \overline{BD} is $\frac{1}{3}$.
 - D) The slope of \overline{AB} is $\frac{1}{2}$.

Quadrilateral *ABCD* with vertices A(-7, 4), B(-3, 6), C(3, 0), & D(1, -8) is graphed on the set of axes (shown). Quadrilateral *MNPQ* is formed by joining *M*, *N*, *P*, and *Q*, the midpoints of \overline{AB} , \overline{BC} , \overline{CD} , & \overline{AD} respectively.

9. Show that quadrilateral *MNPQ* is a parallelogram.

10. Show that quadrilateral *MNPQ* is *not* a rhombus.