\qquad

6.6.D1 - QUADRILATERILS IN THE COORDINATE PLANE

\qquad Period: \qquad
Graph the quadrilateral described. Determine the most precise name for the quadrilateral: rectangle, rhombus, square, kite, or trapezoid AND justify your reasoning. Show all work on a separate sheet of paper.

1. $F(0,0), G(5,5), H(8,4), I(7,1)$

2. $W(0,-6), X(-4,2), Y(4,6), Z(8,-2)$

Use the given information to determine if quadrilateral $A B C D$ can best be described as a rectangle, square, rhombus, trapezoid, or none of these. Explain your reasoning.
3. Side lengths: $A B=\sqrt{20}, B C=\sqrt{45}, C D=\sqrt{20}, D A=\sqrt{45}$

Slope of $\overline{A B}=-2 \quad$ Slope of $\overline{B C}=\frac{1}{2}$
Slope of $\overline{C D}=-2 \quad$ Slope of $\overline{D A}=\frac{1}{2}$
4. Side lengths: $\quad A B=\sqrt{13}, B C=\sqrt{13}, C D=\sqrt{13}, D A=\sqrt{13}$

Slope of $\overline{A B}=-\frac{3}{2} \quad$ Slope of $\overline{B C}=1$
Slope of $\overline{C D}=-\frac{3}{2} \quad$ Slope of $\overline{D A}=1$
5. Side lengths: $A B=\sqrt{13}, B C=\sqrt{17}, C D=\sqrt{52}, D A=\sqrt{10}$

Slope of $\overline{A B}=\frac{2}{3} \quad$ Slope of $\overline{B C}=-\frac{1}{4}$
Slope of $\overline{C D}=\frac{2}{3} \quad$ Slope of $\overline{D A}=-3$
6. Side lengths: $A B=\sqrt{14}, B C=\sqrt{14}, C D=\sqrt{14}, D A=\sqrt{14}$

Slope of $\overline{A B}=\frac{1}{8} \quad$ Slope of $\overline{B C}=-8$
Slope of $\overline{C D}=\frac{1}{8} \quad$ Slope of $\overline{D A}=-8$
7. The coordinates of the vertices of parallelogram $A B C D$ are $A(-3,2), B(-2,-1), C(4,1), \& D(3,4)$. The slopes of which line segments could be calculated to show that $A B C D$ is a rectangle?
A) $\overline{A B} \& \overline{D C}$
B) $\overline{A B} \& \overline{B C}$
C) $\overline{A D} \& \overline{B C}$
D) $\overline{A C} \& \overline{B D}$
8. Parallelogram $A B C D$ has coordinates $A(0,7) \& C(2,1)$. Which statement would prove that $A B C D$ is a rhombus?
A) The midpoint of $\overline{A C}$ is $(1,4)$.
$B)$ The length of $\overline{B D}$ is $\sqrt{40}$.
C) The slope of $\overline{B D}$ is $\frac{1}{3}$.
D) The slope of $\overline{A B}$ is $\frac{1}{3}$.

Quadrilateral $A B C D$ with vertices $A(-7,4), B(-3,6), C(3,0), \& D(1,-8)$ is graphed on the set of axes (shown). Quadrilateral $M N P Q$ is formed by joining M, N, P, and Q, the midpoints of $\overline{A B}, \overline{B C}, \overline{C D}, \& \overline{A D}$ respectively.
9. Show that quadrilateral $M N P Q$ is a parallelogram.
10. Show that quadrilateral $M N P Q$ is not a rhombus.

