\qquad

6.6.D2 - PROOFS WITH SPECIAL QUADRILITERILS

Past due on: \qquad Period: \qquad

1. What is the most descriptive name for each quadrilateral below?

2. Which quadrilateral(s) have congruent diagonals and opposite sides that are parallel?
3. In quadrilateral $M N O P, \angle M \cong \angle N$. What type(s) of quadrilateral could this be?
4. The measures of the angles of a quadrilateral are $x+15,2 x, x-45$, and $2 x-60$. What type(s) of quadrilateral could this be?
5. Which pairs of quadrilaterals are congruent? Select ALL that apply:
a. Two squares whose corresponding diagonals are congruent.
b. Two rectangles whose corresponding diagonals are congruent.
c. Two rhombuses whose corresponding diagonals are congruent.

Determine whether the parallelogram is a rhombus, a rectangle, or a square. Give the most precise description in each case.
6. A parallelogram has perpendicular diagonals and angle measures of $45^{\circ}, 135^{\circ}, 45^{\circ}$, and 135°.
7. A parallelogram has perpendicular and congruent diagonals.
8. A parallelogram has perpendicular diagonals and angle measures that are all 90°.
9. A parallelogram has congruent diagonals.
10. $J K M O$ is a parallelogram.
$\overleftrightarrow{J M}$ bisects $\angle O J K \& \angle O M K$
$O J=x+5, K M=y-3$, and $J K=2 x-4$
a. Is $J K M O$ a rhombus? Explain your reasoning.
b. Find the values of x and y.
c. Find the perimeter of $J K M O$.

11. The diagonals of rhombus TEAM intersect at $P(2,1)$. If the equation of the line that contains diagonal $\overline{T A}$ is $y=-x+3$, what is the equation of the line that contains diagonal $\overline{E M}$?

Determine if the conclusion is valid and explain your reasoning. If the conclusion is NOT valid, tell what additional information is needed to make it valid.
12. Given: $\overline{A B} \| \overline{C D}, \overline{A B} \perp \overline{B C}, \overline{A B} \cong \overline{C D}$

Conclusion: $A B C D$ is a rectangle

13. Given: $\overline{F H}$ bisects $\angle E F G \& \angle E H G$

Conclusion: $E F G H$ is a rhombus

14. Given: $J K L M$ is a parallelogram $\overline{J M} \cong \overline{L N}$
$\angle L M N \cong \angle L N M$
Prove: $J K L M$ is a rhombus

STATEMENTS
REASONS

