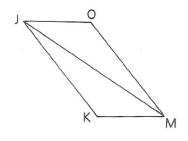

Chapter 6: Quadrilaterals

Chapter 6: Quadrilaterals

1. What is the most descriptive name for each quadrilateral below?

6.6.D2 — PROOFS WITH SPECIAL QUADRILATERALS


- 2. Which quadrilateral(s) have congruent diagonals and opposite sides that are parallel?
- 3. In quadrilateral *MNOP*, $\angle M \cong \angle N$. What type(s) of quadrilateral could this be?
- 4. The measures of the angles of a quadrilateral are x + 15, 2x, x 45, and 2x 60. What type(s) of quadrilateral could this be?
- 5. Which pairs of quadrilaterals are congruent? Select ALL that apply:
 - a. Two squares whose corresponding diagonals are congruent.
 - b. Two rectangles whose corresponding diagonals are congruent.
 - c. Two rhombuses whose corresponding diagonals are congruent.

Determine whether the parallelogram is a rhombus, a rectangle, or a square. Give the most precise description in each case.

- 6. A parallelogram has perpendicular diagonals and angle measures of 45° , 135° , 45° , and 135° .
- 7. A parallelogram has perpendicular and congruent diagonals.
- 8. A parallelogram has perpendicular diagonals and angle measures that are all 90° .
- 9. A parallelogram has congruent diagonals.
- 10. *JKMO* is a parallelogram.

 \overrightarrow{JM} bisects $\angle OJK \& \angle OMK$

- OJ = x + 5, KM = y 3, and JK = 2x 4
 - a. Is JKMO a rhombus? Explain your reasoning.
 - b. Find the values of *x* and *y*.
 - c. Find the perimeter of *JKMO*.

Name: _

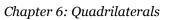
Past due on: _____

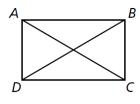
Period:

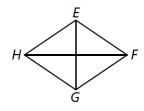
11. The diagonals of rhombus *TEAM* intersect at P(2, 1). If the equation of the line that contains diagonal \overline{TA} is y = -x + 3, what is the equation of the line that contains diagonal \overline{EM} ?

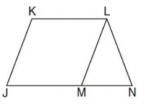
Determine if the conclusion is valid and explain your reasoning. If the conclusion is NOT valid, tell what additional information is needed to make it valid.

12. Given: $\overline{AB} \parallel \overline{CD}, \overline{AB} \perp \overline{BC}, \overline{AB} \cong \overline{CD}$ Conclusion: ABCD is a rectangle


13. Given: \overline{FH} bisects $\angle EFG \& \angle EHG$ Conclusion: EFGH is a rhombus


14. Given: JKLM is a parallelogram $\overline{JM} \cong \overline{LN}$ $\angle LMN \cong \angle LNM$


Prove: *JKLM* is a rhombus


STATEMENTS

REASONS

