\qquad

6.REV. 1 ~ Exponential Functions

1. Which function(s) have a value of $b>1$?
2. Which function(s) have the smallest initial value?
3. Which function increases at the slowest rate?
4. Which function(s) represent exponential decay?
5. Which functions have the same initial value?
6. Which function is decaying at the fastest rate?

Past due on: \qquad Period: \qquad $E(t)$
7. Consider the exponential function $Q(t)=3.5(1.182)^{t}-8$ and identify the following characteristics:

y-intercept	Horizontal asymptote	Increasing or decreasing?	Range	$\lim _{t \rightarrow-\infty} Q(t)$	$\lim _{t \rightarrow \infty} Q(t)$

Identify the function as linear or exponential. Write a function equation of the form $y=m x+b$ if linear and $y=a(b)^{x}$ if exponential.
8.

x	y
-1	50
0	10
1	2
2	0.4

9.

x	y
0	35
1	29
2	23
3	17

10.

x	y
0	32
1	28
2	24
3	20

11. At the start of a study, the size of a particular animal population was 5000 . Write a function formula for the size of an animal population, P, in t years since the start of the study.
a. Rising at a rate of 3.85% annually.
b. Diminishing at a continuous rate of 16.2% every December $31^{\text {st. }}$.
c. Declining at a yearly rate of $15 \cdot 4 \%$.
d. Escalating at a continuous rate of 22% each year.
e. Lessening at a constant rate of 40 animals every 52 weeks.
f. Climbing at a steady rate of 500 animals every twelve months.
12. Write an exponential function that represents the graph that is shown.

13. Sales of energy-efficient compact fluorescent lamps in China have been growing exponentially. In 1994, the sales were $\$ 20$ million and in 2003 they had increased to $\$ 440$ million. What is the percent growth rate? Round to two decimal places.
14. At time $t=0$ years, a species of turtle is released into a wetland. When $t=4$ years, a biologist estimates there are 300 turtles in the wetland. Three years later, the biologist estimates there are 450 turtles. Find a formula for P, the turtle population assuming exponential growth. Round a to the nearest whole number and b to 3 decimal places.
15. In 2000, the population of Gotham City was 2.925 million. By 2015, the population had increased by 19.2\%.
a. What was the population in 2015?
b. Assuming a constant growth factor, by what percent did the population of Gotham City grow each year? Round to two decimal places.
c. Assuming linear growth, by how many people did the population of Gotham City increase each year?
16. Consider a money market account that pays interest at the rate of 6.4% per year and is compounded monthly.
a. What are the nominal and effective annual rates of? Round the effective rate to 3 decimal places.
b. How much money is in the money market account 10 years later if $\$ 2500$ is invested initially?
17. Which is better: an account paying 5.3% interest compounded continuously or an account paying 5.4% interest compounding quarterly? Justify your answer with mathematics.
