6.REV. 2 - EnD of Exponentials Review

1. Which function(s) have a value of $b>1$?
2. Which function(s) have the smallest initial value?
3. Which function increases at the slowest rate?
4. Which function has the greatest value of b ?
5. Which function(s) represent exponential decay?
6. Which function is decaying at the fastest rate?
\qquad
Date: \qquad Period: \qquad

7. Let $P(t)=1200(1.045)^{t}$ represent the population of Brighton, where t represents the years since 2003.
a. At what percent rate is Brighton's population increasing?
b. Evaluate and interpret $P(15)$.
8. Each of the functions in the table below is increasing, but each increases in a different way. One is linear, one is exponential, and one is neither. Which is which? What is the linear function's rate of change? What is the exponential function's change factor?

t	$f(t)$	$g(t)$	$h(t)$
1	13.66	12.5	56.5
2	14.76	22.5	63.28
3	15.86	31.5	70.874
4	16.96	39.5	79.3784
5	18.06	46.5	88.9038

9. At the start of a study, the size of a particular animal population was 5000. Write a function formula for the size of an animal population, P, in t years since the start of the study.
a. Rising at a rate of 2.8% annually.
b. Diminishing at a continuous rate of 17%.
c. Declining at a yearly rate of 11%.
d. Escalating at a continuous rate of 20%.
e. Lessening at a constant rate of 300 animals every 52 weeks.
f. Climbing at a steady rate of 50 animals every twelve months.
10. Kryptonite decays at an annual rate of 11.4% per year. The initial amount of Kryptonite is 200 grams.
a. Write an exponential function formula that represents the remaining amount, A, as a function of the time, t, in years.
b. Predict how much Kryptonite is remaining in 10 years.
11. In the year 2004, a total of 3.9 million people traveled on Disney Cruise lines. The industry has been growing at approximately 7% per year. Write an exponential function formula that represents the number of people, P, as a function of the time, t, in years since 2004.
12. In a typical can of Code Red Mountain Dew there is approximately 475 milligrams of caffeine. Each hour the body metabolizes and eliminates 14.5% of the caffeine. Write an exponential function formula that represents the amount of caffeine remaining, C, as a function of the time, t, in hours.
13. Sales of energy-efficient compact fluorescent lamps in China have been growing exponentially. In 1994, the sales were $\$ 20$ million and in 2003 they had increased to $\$ 440$ million. What is the percent growth rate?
14. Theophylline is a common asthma drug. The concentration of theophylline in the blood stream is 10 milligrams/liter one hour after injection. After 9 hours, the concentration is $2.5 \mathrm{mg} / l$. Write an exponential function formula that represents the concentration, C, as a function of the time, t, in hours. Round the b value to 3 decimal places and the a value to 2 decimal places.
15. Consider the exponential function $Q(t)=3(0.854)^{t}+2$ and identify the following characteristics:

y-intercept	Horizontal asymptote	Increasing or decreasing?	Range	$\lim _{t \rightarrow-\infty} Q(t)$	$\lim _{t \rightarrow \infty} Q(t)$

16. What are the nominal and effective annual rates of a money market account that pays interest at the rate of 6% per year and is compounded daily? Round the effective rate to three decimal places.
17. Find the effective annual rate if $\$ 2500$ is deposited at 5.3% annual interest compounded continuously. Round the effective rate to three decimal places.
18. In 1999, the population of Metropolis was 7.4 million and growing at a constant percentage rate.
a. If there is an annual growth rate of 5.6%, what will the population be in 2024 ?
b. If there is a continuous growth rate of 5.6%, what will the population be in 2024 ?
