\qquad
\qquad Period: \qquad
Write a linear inequality in two variables to represent each problem situation. Graph the linear inequality. Refer to the 7.1 examples "Writing a Linear Inequality in Two Variables" and "Graphing a Linear Inequality in Two Variables" in the Chapter 7 Summary.

1. Zack is buying peanuts and cashews for a party. He can spend no more than $\$ 24$. Peanuts cost $\$ 2$ per pound and cashews cost $\$ 3$ per pound. Let $x=$ peanuts (in pounds) \& $y=$ cashews (in pounds).
a. Write a linear inequality: \qquad
b. Graph the linear inequality:
c. If $x=6$ pounds, what are all possible values of y ?

2. Kara is filling her bathtub. The cold water flows at a rate of 4 gallons per minute. The hot water flows at a rate of 3 gallons per minute. Kara wants no more than 60 gallons of water in the tub. Let $x=$ time that cold water is running \& $y=$ time the hot water is running.
a. Write a linear inequality: \qquad
b. Graph the linear inequality:
c. If $x=3$ minutes, what are all possible values of y ?

3. Student Council is selling tickets to the Valentine Dance. Tickets cost $\$ 5$ per person or $\$ 8$ per couple. To cover expenses, at least $\$ 1200$ worth of tickets must be sold. Let $x=$ number of $\$ 5$ tickets sold \& $y=$ number of $\$ 8$ tickets sold.
a. Write a linear inequality: \qquad
b. Graph the linear inequality:
c. If $x=80$ tickets, what are all possible values of y ?

Define variables and write a system of inequalities to represent each situation. Refer to the 7.2 example "Writing a System of Linear Inequalities" in the Chapter 7 Summary.
4. Jamal runs the bouncy house at a festival. The bouncy house can hold a maximum of 1200 pounds at one time. He estimates that adults weigh approximately 200 pounds and children under 16 weigh approximately 100 pounds. For 1 four-minute session of bounce time, Jamal charges adults $\$ 3$ each and children $\$ 2$ each. Jamal hopes to charge at least $\$ 24$ for each session.

Let $x=$ \qquad $\& y=$ \qquad
Inequality 1: \qquad \& Inequality 2:
5. Carlos works at a movie theater selling tickets. The theater has 300 seats and charges $\$ 7.50$ for adults and $\$ 5.50$ for children. The theater expects to make at least $\$ 2000$ for each showing.

Let $x=$ \qquad $\& y=$ \qquad
Inequality 1: \qquad \& Inequality 2: \qquad
6. Sofia is making flower arrangements to sell in her shop. She can complete a small arrangement in 30 minutes that sells for $\$ 20$. She can complete a larger arrangement in 1 hour that sells for $\$ 50$. Sofia hopes to make at least $\$ 250$ during her 8 -hour workday.

Let $x=$ \qquad $\& y=$ \qquad
Inequality 1: \qquad \& Inequality 2: \qquad
7. The maximum capacity for an average passenger elevator is 15 people and 3000 pounds. It is estimated that adults weigh approximately 200 pounds and children under 16 weigh approximately 100 pounds.

Let $x=$ \qquad $\& y=$ \qquad
Inequality 1: \qquad \& Inequality 2:
8. Pablo's pickup truck can carry a maximum of 1000 pounds. He is loading his truck with 20-pound bags of cement and 8o-pound bags of cement. He hopes to load at least 10 bags of cement into his truck.

Let $x=$ \qquad $\& y=$ \qquad
Inequality 1: \qquad \& Inequality 2: \qquad
Graph each system of linear inequalities and identify the intersection point. Refer to the 7.2 example "Graphing a System of Linear Inequalities" in the Chapter 7 Summary.

