\qquad
\qquad Period: \qquad
Write a system of inequalities to represent each problem situation. Graph the system of inequalities. Refer to the 7.2 examples "Writing a System of Linear Inequalities" and "Graphing a System of Linear Inequalities" in the Chapter 7 Summary.

1. The owner of Jeff's Fish Market orders cod and salmon. He wants to buy at least 50 pounds of fish but cannot spend more than $\$ 300$. Cod is $\$ 4$ per pound and salmon is $\$ 7$ per pound. Let $x=$ pounds of $\operatorname{cod} \& y=$ pounds of salmon.
a. Inequality 1 : \qquad
b. Inequality 2 : \qquad
c. Which of the following are solutions?

$$
(40,15) \quad(50,18) \quad(30,20) \quad(55,8) \quad(20,35)
$$

2. Ali is designing a rectangular flower garden with a fence around it. She can use no more than 80 feet of fencing. She wants the width to be at least 5 feet and the length to be at least 20 feet. Let $x=$ the width $\& y=$ the length.
a. Inequality 1 : \qquad
b. Inequality 2 : \qquad
c. Inequality 3 : \qquad
d. Which of the following are solutions?

$$
(10,23) \quad(7,30) \quad(18,25) \quad(8,35) \quad(20,20)
$$

3. Tickets for the Spring Fling cost $\$ 3$ per person or $\$ 5$ per couple. To cover expenses, at least $\$ 750$ worth of tickets must be sold. However, no more than 400 people can fit in the gym.
Let $x=$ the number of $\$ 3$ tickets sold $\& y=$ the number of $\$ 5$ tickets sold.
a. Inequality 1 : \qquad
b. Inequality 2 : \qquad

c. Which of the following are solutions?

$$
(50,110)(150,70)(280,45) \quad(300,60) \quad(0,200)
$$

Define variables and write a system of inequalities to represent each situation. Refer to the 7.2 example "Writing a System of Linear Inequalities" in the Chapter 7 Summary.
4. Oliver is drawing caricatures at the state fair. He is available for 8 hours (480 minutes). He can complete a small drawing in 15 minutes and charges $\$ 10$ for the drawing. He can complete a larger drawing in 45 minutes and charges $\$ 25$ for the drawing. Oliver hopes to make at least $\$ 200$ at the fair.

Let $x=$ \qquad $\& y=$ \qquad
Inequality 1: \qquad \& Inequality 2: \qquad

Graph each system of linear inequalities and identify the intersection point. Refer to the 7.2 example "Graphing a System of Linear Inequalities" in the Chapter 7 Summary.

Determine the x-intercept and the y-intercept of each equation. Then convert each equation from standard form to slope-intercept form and identify the slope. Refer to examples $3.2 \& 3.3$ in the Chapter 3 Summary.

	SLOPE-INTERCEPT FORM	x-INTERCEPT	y-INTERCEPT	SLOPE
$11.5 x-2 y=10$				

