Name: _____

Past due on: _____ Period: _____

Problems 1 - 4, *f* and *g* are defined by the following tables. Use the tables to evaluate each composite function.

1.
$$f^{-1}(4)$$

- 2. $g^{-1}(2)$
- 3. $f^{-1}(-1)$
- 4. $g^{-1}(1)$

x	f(x)	x	g(x)
-1	1	-1	0
0	4	1	1
1	5	4	2
2	-1	10	-1

Given the function f(x) = 4x - 2, determine each of the following:

	5. $f^{-1}(?) = 4$	6. $f^{-1}(?) = 0$	7. $f^{-1}(-2) = ?$	8. $f^{-1}(8) = 2$
--	--------------------	--------------------	---------------------	--------------------

9. The table gives values of an invertible function *f*.

x	0	1	2	3	4
f(x)	-1	0	1	3	5

Evaluate the following quantities:

a.
$$f^{-1}(1) = ?$$
 b. $f^{-1}(?) = 1$

For the given function, y = f(x), find a formula for its inverse function, $f^{-1}(y)$.

11.
$$y = 2x + 3$$

12. $y = \frac{7}{x} - 3$
13. $y = \frac{2}{3}x + 1$

14.
$$y = \sqrt{x+3}$$
 15. $y = \sqrt[3]{x+5}$ 16. $y = (2x-3)^2$