\qquad
\qquad Period: \qquad
Problems $1-4, f$ and g are defined by the following tables. Use the tables to evaluate each composite function.

1. $f^{-1}(4)$
2. $g^{-1}(2)$
3. $f^{-1}(-1)$
4. $g^{-1}(1)$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-1	1
0	4
1	5
2	-1

\boldsymbol{x}	$\boldsymbol{g (x)}$
-1	0
1	1
4	2
10	-1

Given the function $f(x)=4 x-2$, determine each of the following:
5. $f^{-1}(?)=4$
6. $f^{-1}(?)=0$
7. $f^{-1}(-2)=$?
8. $f^{-1}(8)=$?
9. The table gives values of an invertible function f.

x	0	1	2	3	4
$f(x)$	-1	o	1	3	5

Evaluate the following quantities:
a. $f^{-1}(1)=$?
b. $f^{-1}(?)=1$
10. Let f be given by the graph. Evaluate the following quantities:

For the given function, $y=f(x)$, find a formula for its inverse function, $f^{-1}(y)$.
11. $y=2 x+3$
12. $y=\frac{7}{x}-3$
13. $y=\frac{2}{3} x+1$
14. $y=\sqrt{x+3}$
15. $y=\sqrt[3]{x+5}$
16. $y=(2 x-3)^{2}$

