\qquad
\qquad Period: \qquad
Define variables and write a system of inequalities to represent each situation. Refer to the 7.3 example "Writing a System of More Than Two Inequalities" in the Chapter 7 Summary.

1. A company manufactures at most 20 mattresses each day. The company produces a twin size mattress and a queen size mattress. Its daily production goal is to produce at least 5 of each type of mattress.

Let $x=$ \qquad \&

Let $y=$ \qquad
2. A company manufactures calculators. A financial calculator costs $\$ 65$ to make and a graphing calculator costs $\$ 105$ to make. The budget available for materials is $\$ 2500$ per day. The manufacturing capacity is 20 calculators per day.

> Do either of these apply?

$$
x \geq 0 \quad y \geq 0
$$

System of inequalities:

Do either of these apply?

$$
x \geq 0 \quad y \geq 0
$$

System of inequalities:

Let $x=$ \qquad \&

Let $y=$ \qquad
3. A furniture company manufactures sofas and loveseats. A loveseat takes 5 hours and $\$ 650$ to make. A soft takes 8 hours and $\$ 940$ to make. The company's employees work a total of 240 hours in a day. The daily operating budget is $\$ 25,000$ per day for materials to make at least 40 pieces of furniture.

Let $x=$ \qquad \&

Let $y=$ \qquad
4. A company manufactures golf clubs. A putter takes 2 hours and $\$ 80$ to make. A driver takes 2 hours and $\$ 120$ to make. The company's employees work a total of 72 hours in a day. The daily operating budget is $\$ 3000$ per day for materials. The company wants to make at least 10 of each kind of club.

Let $x=$ \qquad \&

Let $y=$ \qquad

Do either of these apply?

$$
x \geq 0 \quad y \geq 0
$$

System of inequalities:

Do either of these apply?

$$
x \geq 0 \quad y \geq 0
$$

System of inequalities:

Graph the solution set for each system of linear inequalities. Identify all points of intersection of the boundary lines. Refer to the 7.3 example "Solving a System of More Than Two Inequalities by Graphing" in the

Chapter 7 Summary.
$y \leq 4$
5. $2 x-y \leq 10$
$y>-x-4$

INTERSECTION POINTS:

Chapter 7: Systems of Inequalities
$y \geq 3$
7. $x \geq 0$
7. $\begin{aligned} & x+y \leq 20\end{aligned}$
$2 x-3 y \geq-15$

INTERSECTION POINTS:
$y \geq 10$
8. $\begin{aligned} & x \geq 20 \\ & x+y \leq 90\end{aligned}$
$x+4 y \leq 240$

INTERSECTION POINTS:

Solve each system of equations using the appropriate method: substitution or linear combinations. Write your solution as an ordered pair (x, y). Refer to the 6.1 example "Solving Systems of Linear Equations Using the Substitution Method" or the 6.2 example "Solving a System of Equations Using the Linear Combinations Method" in the Chapter 6 Summary.
9. $-8 x-10 y=-20$
$y=6$
10. $\begin{aligned} & 8 x+3 y=-14 \\ & 8 x+5 y=-2\end{aligned}$
11. $\begin{aligned} & x=3 y-3 \\ & 4 x-9 y=-6\end{aligned}$
12. $\begin{aligned} 2 x-2 y & =26 \\ 4 x+8 y & =16\end{aligned}$
. $4 x+8 y=16$

