Name

7.3 ~ The Tangent Ratio

Past due on \qquad Period \qquad

1) In triangle $A B C, m \angle B=90^{\circ}, A C=50, A B=48$, and $B C=14$. Write a ratio, in simplest form, that represents the tangent of $\angle A$.

Write a trigonometric equation using tangent to find the indicated side length, x. Give an exact answer, solve the equation for x, and approximate answer rounded to the nearest hundredth.
2)

3)

4)

5)

6)

7)

Write a trigonometric ratio and use it to calculated the measure of the indicated angle to the nearest tenth of a degree.
8)

9)

10)

11)

Draw a diagram that represents each situation. Write and solve a trigonometric equation (or ratio) using tangent. Approximate your answer to the nearest tenth unless otherwise stated.

12) A water slide makes an angle of 13° with the ground. The slide extends horizontally 58.2 meters. Find the height of the slide.
13) The distance from a point P on the ground to a point R at the base of a cliff is 30 meters. The measure of angle P is 72°. What is the height of the cliff?
14) You must order a new rope for the flagpole. To find out what length of rope is needed, you observe that pole casts a shadow 11.6 meters long on the ground. The angle between the sun's rays and the ground is 36.8°. How tall is the pole?
15) Lombard Street is on a hill in San Francisco, California, that rises 45 feet for every 100 feet of horizontal distance. What angle does the hill make with a horizontal line? Round to the nearest degree.
16) A hiker whose eyes are 5.5 feet above ground stands 25 feet from the base of a redwood tree. She looks up at an angle of 71° to see the top of the tree. If the hiker is 5.5 feet tall, what is the height of the tree?
17) A lifeguard is sitting on an observation chair at a pool. The lifeguard's eye level is 6.2 feet from the ground. The base of the chair is 15.4 feet from a swimmer. Calculate the measure of the angle formed when the lifeguard looks down at the swimmer.
