\qquad

9.1 RADII \& CHORDS

Past due on: \qquad Period: \qquad

1. Given: $\odot O$

If $A O=10 \& B E=4$, find the length of $\overline{C D} \& m \angle C$.
(Hint: Use a trig ratio to find $m \angle C$.)

2. Given: $\odot O$

If $A E=9 \& B E=4$, find the length of $\overline{C D}$.

3. In $\odot O, \overline{A B} \cong \overline{C D}, \overline{O E} \perp \overline{A B} \& \overline{O F} \perp \overline{C D}$.

If $A E=y+10, C D=4 y-20, \& O F=16$, determine the lengths of $\overline{D F} \& \overline{O A} \& m \angle B A O$.

4. In $\odot O, \overline{A B} \cong \overline{C D}, \overline{O E} \perp \overline{A B} \& \overline{O F} \perp \overline{C D}$.

If $A B=2 x^{2}-35 \& C D=-9 x$, determine the length of $\overline{A B}$.

Exercises 5 and 6: Find the value of x AND the radius of $\odot Q$.

6.

Exercises 7 and 8: In $\odot P, \overline{P E} \cong \overline{P F}$. Find the value of x AND the indicated segment length.
7. $A E=x+4$ and $C D=3 x-2$; find $C D$.

8. $A B=7 x+13$ and $C D=10 x-8$; find $C F$.

9. Explain what's wrong with this picture:

10. Find the coordinates of M and the slope of $\overline{P M}$.

11. The accompanying diagram shows a semicirculular arch over a street that has a radius of 14 feet. A banner is attached to the arch at points A and B, such that $A E=E B=5$ feet. How many feet above the ground are these points of attachment for the banner?

