\qquad

9.3 Thenents

Past due on: \qquad Period: \qquad
Use the Tangent to a Circle Theorem to determine if $\overleftrightarrow{A B}$ is tangent to $\odot C$. If it is, then use a trig ratio to find $m \angle B$, rounded to the nearest tenth of a degree.
1.

2.

3. Point B is a point of tangency. Find the radius of $\odot C$. Use a trig ratio to find $m \angle B A C$.

4. Use the Tangent to a Circle Theorem to find the value of x.

$\overleftrightarrow{A B}$ and $\overleftrightarrow{A D}$ are tangent to $\odot C$. Use the Two-Tangent Theorem to set up and solve an equation to find the value of x (that makes sense).
5.

6.

7. Find the values of x and y. Justify your answer.
8. In $\odot O, O C=10, m \angle A B C=54^{\circ}$, and $\overrightarrow{B A}$ and $\overrightarrow{B C}$ are tangents to $\odot O$. Find $B C$.

Use the Two-Tangent Theorem to find the perimeter of the circumscribed polygon.
9. $O R=13 \& S T=12$

10. $W O=14, H M=4$,
$S W=11$, and $S T=5$

Find the indicated measurement. (Assume that lines which appear to be tangent, are tangent.)
11. A walk-around problem: $A B=20, B C=11, \& D C=14$. Let $A Q=x$. Find $A D$.

Use the "Common Tangent Procedure" to find the length of the common external tangent. If necessary, round to the nearest tenth.
12. $\odot B$ and $\odot O$ are tangent circles; $\overline{R T}$ is a common tangent.
13. $\overline{A B}$ is a common external tangent.

14. $\odot P$ is centered at the origin. $\overleftrightarrow{A T}$ is tangent to $\odot P$ at $A(8,15)$.

Find the equation of $\overleftrightarrow{A T}$.

