Name: _____

Past due on: _____ Period: _____

Use the Tangent to a Circle Theorem to determine if \overrightarrow{AB} is tangent to $\bigcirc C$. If it is, then use a trig ratio to find $m \angle B$, rounded to the nearest tenth of a degree.

2.

3. Point *B* is a point of tangency. Find the radius of $\bigcirc C$. Use a trig ratio to find $m \angle BAC$.

4. Use the Tangent to a Circle Theorem to find the value of *x*.

 \overrightarrow{AB} and \overrightarrow{AD} are tangent to $\bigcirc C$. Use the Two-Tangent Theorem to set up and solve an equation to find the value of *x* (that makes sense).

7. Find the values of *x* and *y*. Justify your answer.

8. In $\bigcirc O$, OC = 10, $m \angle ABC = 54^\circ$, and \overrightarrow{BA} and \overrightarrow{BC} are tangents to $\bigcirc O$. Find *BC*.

W

X

M

Use the Two-Tangent Theorem to find the perimeter of the circumscribed polygon.

9. OR = 13 & ST = 12

10. *WO* = 14, *HM* = 4, *SW* = 11, and *ST* = 5

Find the indicated measurement. (Assume that lines which appear to be tangent, are tangent.)

11. A walk-around problem: AB = 20, BC = 11, & DC = 14. Let AQ = x. Find AD.

Use the "Common Tangent Procedure" to find the length of the common external tangent. If necessary, round to the nearest tenth.

12. $\bigcirc B$ and $\bigcirc O$ are tangent circles; \overline{RT} is a common 13. It tangent.

13. \overline{AB} is a common external tangent.

14. $\bigcirc P$ is centered at the origin. \overleftarrow{AT} is tangent to $\bigcirc P$ at A(8, 15). Find the equation of \overleftarrow{AT} .

