1.6 Graphical Transformations

Understanding how algebraic alterations change the shapes, sizes, positions, and orientations of graphs is helpful for understanding the connection between algebraic and graphical models of functions.

* Transformations
- Functions that map real numbers to real numbers

All functions can be written in such a way:

$$
a f(b(x+c))+d
$$

* Reflections Across Axes (flips)
$>$ The following transformations result in reflections of the graph of $y=f(x)$:
- $y=-f(x)$: a reflection across the x-axis
- $y=f(-x)$: a reflection across the y-axis

* Size Changes

$>$ Let a be a positive real number. Then the following transformations result in VERTICAL size changes of the graph of $y=f(x)$

- $y=a f(x)$
- A stretch by a factor of a if $a>1$
- A compression by a factor of a if $0<a<1$
$>$ Let b be a positive real number. Then the following transformations result in HORIZONTAL size changes of the graph of $y=f(x)$
- $y=f\left(\frac{x}{b}\right)$
- A stretch by a factor of b if $b>1$
- A compression by a factor of b if $0<b<1$
* Vertical \& Horizontal Translations (shifts)
$>$ Let c be a positive real number. Then the following transformations result in HORIZONTAL translations of the graph of $y=f(x)$
- $y=f(x-c) \quad$ a shift right c units
- $y=f(x+c) \quad$ a shift left c units
$>$ Let d be a positive real number. Then the following transformations result in VERTICAL translations of the graph of $y=f(x)$
- $y=f(x)+d \quad$ a shift up d units
- $y=f(x)-d \quad$ a shift down d units

