\qquad
\qquad Period: \qquad
The functions $f(x) \& h(x)$ show the angry bird's height (in meters) as a function of his horizontal distance from the base of the slingshot, x (also in meters).

1. What is the value of c (of either function) and what does it represent in terms of the contextual situation?
2. Use Desmos to graph the flight path given by the function $f(x)$.
a. What are the coordinates of the absolute maximum? Describe what the coordinates represent in terms of the problem situation.
b. What are the coordinates of the x-intercepts? Explain what each means in terms of the problem situation.
c. What is the angry bird's horizontal distance from the base of the slingshot when he reaches a height of 7 feet?
3. Use Desmos to graph the flight path given by the function $h(x)$.
a. What are the coordinates of the absolute maximum?
b. What are the coordinates of the x-intercepts?
c. What is the angry bird's horizontal distance from the base of the slingshot when he reaches a height of 5 feet?
4. Chuck's flight path can be modeled by the quadratic function $y=-x^{2}+14 x-24$.
a. What is Chuck's absolute maximum?
b. King Pig is located at point $(21,19.5)$ and Moustache Pig is located at point $(9,21)$. Chuck only hits one of them. Which pig? Explain your reasoning.
c. Red's flight path is represented in the graph (shown at right). Who flew higher: Chuck or Red?
d. Who travelled the greater horizontal distance from the slingshot: Chuck or Red? Explain your reasoning.

Determine whether the function has an absolute maximum or an absolute minimum. Then, use a graphing calculator, or Desmos, the find the coordinates of the absolute maximum or absolute minimum.
5. $y=x^{2}-6 x+4$
6. $f(x)=x^{2}-3 x+3$
7. $h(t)=-3 x^{2}+9 x+2$
8. $y=0.5 x^{2}+0.8 x-2$
9. $g(x)=\frac{1}{2} x^{2}-3 x+2$
10. $A(x)=-\frac{3}{8} x^{2}+6 x-5$

