Name: ___

11.2.D2 - Lįnear vs. quadratic functions

Past due on: _____ Period: _____

Calculate the first and second differences for each table of values. Describe the type of function represented by the table: linear or quadratic. Refer to the 11.2 example "Identifying Linear & Quadratic Functions" in the Chapter 11 Summary.

1.					2.				
	x	y	FIRST DIFFERENCES	SECOND DIFFERENCES]	x	y	FIRST DIFFERENCES	SECOND DIFFERENCES
	-2	-6				-2	12		
	-1	-3]			-1	3]	
	0	0]			0	0		
	1	3]			1	3		
	2	6				2	12		
3.					4.				
	x	y	FIRST DIFFERENCES	SECOND DIFFERENCES		x	y	FIRST DIFFERENCES	SECOND DIFFERENCES
	-3	3				-1	1		
	-2	4				0	0		
	-1	5]			1	3		
	0	6]			2	10		
	1	7				3	21		
5.					6.				
	x	y	FIRST DIFFERENCES	SECOND DIFFERENCES		x	y	FIRST DIFFERENCES	SECOND DIFFERENCES
	-4	-48				-1	10		
	-3	-27				0	8		
	-2	-12				1	6		
	-1	-3]			2	4		
	0	0				3	2		

7. The Quickgrow Fertilizer Company is working on different formulas for flower fertilizers. The table shows the growth of unfertilized plants A and the growth of fertilized plant B.

Which plant height would be represented by a linear function? Which would be represented by a quadratic function? Explain your reasoning.

TIME	HEIGHT OF	HEIGHT OF		
(DAYS)	PLANT A (CM)	PLANT B (CM)		
0	4	3		
1	6	4		
2	8	6		
3	10	9		
4	12	13		
5	14	18		
6	16	24		

<u>**1**</u>st **SEMESTER SPIRAL REVIEW** – Refer to your 1^{st} semester summary card.

12. Owen's hourly pay for delivering pizzas is f(x) = 6.50 + 0.75x, where x is the number of pizzas he delivers. Which statements are true about Owen's pay? Select ALL that apply.

- a. If Owen delivers no pizzas, his pay is \$6.50 per hour.
- b. Owen earns 75% of the cost of each pizza.
- c. If Owen delivers 10 pizzas in one hour, he earns \$14 for that hour.
- d. Owen earns \$6350 for each pizza he delivers plus \$0.75 per hour.
- e. Owens earns \$0.75 for each pizza he delivers.

13. Renee is saving money to buy a car. The table shows the total amount of her savings after *x* months.

Month, <i>x</i>	0	1	2	3
Total savings in dollars, <i>y</i>	485	598	711	824

a. What type of function models this situation: linear or exponential? Explain your reasoning.

b. Write a function in either $y = a(b)^x$ or y = mx + b form to model this situation.

c. Complete the table to show the value of her savings after 7, 10, 12, and 15 months.

Month, <i>x</i>	7	10	12	15
Total savings in dollars, y				

- 14. Anya and Jake started new jobs at the same time. Anya's starting salary was \$42,000, and she gets a \$1500 raise each year. Jake's starting salary was \$40,000 and he gets a 3% raise each year.
 - a. Write a function linear, y = mx + b, or exponential, $y = a(b)^x$ to represent Anya's salary, y, after x years.
 - b. Write a function linear, y = mx + b, or exponential, $y = a(b)^x$ to represent Jake's salary, y, after x years.
 - c. Who will be making more money in 10 years? Who will be making more money in 20 years?