Name:

11.5.D1 – THE VERTEX OF OUADRATIC FUNCTIONS

Use a graphing calculator to graph the function and determine the *x*-intercepts. (Use a WINDOW of XMIN = -20, XMAX = 20, YMIN = -10, YMAX = 10.) Then write the quadratic function in factored form. If necessary, factor out a common factor first. Refer to the 11.4 example "Writing a Quadratic Function in Factored Form" in the Chapter 11 Summary.

1.
$$f(x) = x^2 - 8x + 7$$

2. $f(x) = 2x^2 - 10x - 48$

3.
$$f(x) = -x^2 - 20x - 75$$

4. $f(x) = x^2 + 8x + 12$

5. $f(x) = -3x^2 - 9x + 12$ 6. $f(x) = x^2 - 6x$

Write a quadratic function in factored form with each set of given characteristics. Let $a = \pm 3$. Refer to the 11.4 example "Writing a Quadratic Function in Factored Form Given its x-Intercepts" in the Chapter 11 Summary.

- 7. Opens upward & has *x*-intercepts (1,0) & (-3,0)
- 8. Opens downward & has *x*-intercepts (-4,0) & (28,0)

For the function shown, identify the domain, range, vertex, axis of symmetry, *y*-intercept, zeros, and the intervals of increase and decrease. Refer to the THREE 11.3 examples "Identifying/Determining Domain & Range/Zeros/Intervals of Increase & Decrease of a Quadratic Function" in the Chapter 11 Summary.

8. $f(x) = -2x^2 + 8x$	Domain:
	Range:
12	Vertex:
	Axis of symmetry:
	<i>y</i> -intercept:
	Zeros:
-1 10 1 2 3 4 5 6 7 ►	Interval of increase:
	Interval of decrease:

Use the zeros to write the factored form of the quadratic function. If necessary, factor out a common factor first.

9. $f(x) = -2x^2 - 4x + 6$	Domain:
	Range:
	Vertex:
	Axis of symmetry:
	y-intercept:
	Zeros:
	Interval of increase:
	Interval of decrease:

Use the zeros to write the factored form of the quadratic function. If necessary, factor out a common factor first.

10. Compare the zeros of the quadratic function in problem 9 and its axis of symmetry. How can you use the zeros to find the axis of symmetry?

<u>**1**</u>ST **SEMESTER SPIRAL REVIEW** – Refer to your 1^{st} semester summary card.

Write a linear inequality in two variables to represent each problem situation. Graph the linear inequality.

- 11. Zack is buying peanuts and cashews for a party. He can spend no more than \$24. Peanuts cost \$2 per pound and cashews cost \$3 per pound. Let x = peanuts (in pounds) & y = cashews (in pounds).
 - a. Write a linear inequality: _____
 - b. Graph the linear inequality:
 - c. If x = 6 pounds, what are TWO possible values of y?
- 12. Kara is filling her bathtub. The cold water flows at a rate of 4 gallons per minute. The hot water flows at a rate of 3 gallons per minute. Kara wants no more than 60 gallons of water in the tub. Let x = time that cold water is running & y = time the hot water is running.
 - a. Write a linear inequality: _____
 - b. Graph the linear inequality:
 - c. If x = 3 minutes, what are TWO possible values of y?

