\qquad
\qquad Period: \qquad
Use a graphing calculator to graph the function and determine the x-intercepts. (Use a WINDOW of XMIN $=-20$, XMAX $=20$, YMIN $=-10, Y M A X=10$.) Then write the quadratic function in factored form. If necessary, factor out a common factor first. Refer to the 11.4 example "Writing a Quadratic Function in Factored Form" in the Chapter 11 Summary.

1. $f(x)=x^{2}-8 x+7$
2. $f(x)=2 x^{2}-10 x-48$
3. $f(x)=-x^{2}-20 x-75$
4. $f(x)=x^{2}+8 x+12$
5. $f(x)=-3 x^{2}-9 x+12$
6. $f(x)=x^{2}-6 x$

Write a quadratic function in factored form with each set of given characteristics. Let $\boldsymbol{a}= \pm \mathbf{3}$. Refer to the 11.4 example "Writing a Quadratic Function in Factored Form Given its x-Intercepts" in the Chapter 11 Summary.
7. Opens upward \& has x-intercepts
$(1,0) \&(-3,0)$
8. Opens downward \& has x-intercepts
$(-4,0) \&(28,0)$

For the function shown, identify the domain, range, vertex, axis of symmetry, y-intercept, zeros, and the intervals of increase and decrease. Refer to the THREE 11.3 examples "Identifying/Determining Domain \& Range/ Zeros/Intervals of Increase \& Decrease of a Quadratic Function" in the Chapter 11 Summary.
8. $f(x)=-2 x^{2}+8 x$

Domain: \qquad
Range: \qquad
Vertex: \qquad
Axis of symmetry: \qquad
y-intercept: \qquad
Zeros: \qquad
Interval of increase: \qquad
Interval of decrease: \qquad
Use the zeros to write the factored form of the quadratic function. If necessary, factor out a common factor first.
9. $f(x)=-2 x^{2}-4 x+6$

Domain: \qquad
Range: \qquad
Vertex: \qquad
Axis of symmetry: \qquad
y-intercept: \qquad
Zeros: \qquad
Interval of increase: \qquad
Interval of decrease: \qquad
Use the zeros to write the factored form of the quadratic function. If necessary, factor out a common factor first.
10. Compare the zeros of the quadratic function in problem 9 and its axis of symmetry. How can you use the zeros to find the axis of symmetry?

Tst SEMESTER SPIRAL REVIEW - Refer to your $1^{\text {st }}$ semester summary card.

Write a linear inequality in two variables to represent each problem situation. Graph the linear inequality.
11. Zack is buying peanuts and cashews for a party. He can spend no more than $\$ 24$. Peanuts cost $\$ 2$ per pound and cashews cost $\$ 3$ per pound. Let $x=$ peanuts (in pounds) $\& y=$ cashews (in pounds).
a. Write a linear inequality: \qquad
b. Graph the linear inequality:
c. If $x=6$ pounds, what are TWO possible values of y ?

12. Kara is filling her bathtub. The cold water flows at a rate of 4 gallons per minute. The hot water flows at a rate of 3 gallons per minute. Kara wants no more than 60 gallons of water in the tub. Let $x=$ time that cold water is running \& $y=$ time the hot water is running.
a. Write a linear inequality: \qquad
b. Graph the linear inequality:
c. If $x=3$ minutes, what are TWO possible values of y ?

