\qquad
\qquad Period: \qquad
Write an expression that represents the length in terms of the width, x. Then write a quadratic function in standard form that represents the area, A, as a function of the width.

1. Jimmy is designing a rectangular parking lot. He has 600 feet of fencing to enclose the parking lot around all 4 sides.
If $x=$ the width, then the length $=$ \qquad \& the area, $A=$ \qquad
2. Johnny is designing a rectangular parking lot. He has 600 feet of fencing to enclose the parking lot around three sides.
If $x=$ the width, then the length $=$ \qquad \& the area, $A=$ \qquad

Calculate the first and second differences for each table of values. Describe the type of function represented by the table: increasing linear, decreasing linear, positive quadratic or negative quadratic.
3.

x	y	FIRST DIFFERENCES	SECOND DIFFERENCES
-2	-1		
-1	-2		
0	-1		
1	2		
2	7		

4.

x	y	FIRST DIFFERENCES	SECOND DIFFERENCES
-2	11		
-1	8		
0	5		
1	2		
2	-1		

Determine the axis of symmetry of each parabola.
5. The x-intercepts of a parabola are $(-2,0)$ \& $(16,0)$.

Determine the vertex of each parabola.
7. $f(x)=x^{2}+2 x-15$
axis of symmetry: $x=-3$

Determine another point on each parabola.
9. point: $(-1,4)$; axis of symmetry: $x=-3$
8. $f(x)=-x^{2}+4 x-12$

Two symmetric points: $(9,14) \&(-21,14)$

Identify the characteristics of the parabola. Then, write the function in factored form and vertex form.
11. $f(x)=-x^{2}+2 x+3$

Domain:
Axis of symmetry:
Zeros:
Interval of increase:
Function in factored form:

Domain:
Axis of symmetry:
Zeros:
Interval of increase:
Function in factored form:

Range:
Vertex:
y-intercept:
Interval of decrease:
Function in vertex form:

Range:
Vertex:
y-intercept:
Interval of decrease:
Function in vertex form:

Write a quadratic function in the appropriate form with each set of given characteristics. Let $\boldsymbol{a}= \pm \mathbf{4}$.
13. Opens downward \& has x-intercepts $(10,0)$ \& $(-6,0)$
14. Opens upward \& has a vertex at $(-1,8)$
15. Opens downward \& has a vertex at $(3,-6)$
16. Opens upward \& has x-intercepts $(-12,0)$ \& $(-9,0)$

Identify the characteristics of the quadratic function using only its equation.
17. $f(x)=-3(x+3)(x+1)$

Direction of opening:
Zeros:
Use the zeros the find the axis of symmetry: $x=h$

Evaluate the function at h, to find k. What are the coordinates of the vertex?
18. $g(x)=4(x+3)^{2}+1$

Direction of opening:
Axis of symmetry:
Vertex:

Evaluate the function for $x=0$. What is the y-intercept?

