A Radical Review

Objective: Simplify radical expressions
d Perfect Squares \& Square Roots

Look-square roots.

Radicals (square roots)

$$
\begin{aligned}
\sqrt{4} & =2 \\
\sqrt{9} & =3 \\
\sqrt{16} & =4 \\
\sqrt{25} & =5 \\
\sqrt{36} & =6 \\
\sqrt{49} & =7 \\
\sqrt{64} & =8 \\
\sqrt{81} & =9 \\
\sqrt{100} & =10
\end{aligned}
$$

อ Simplifying Radicals/Square Roots
$\frac{>\text { Method } 1}{\text { 1. Find the largest perfect square }}$ which will divide evenly into the radicand-the number under the radical sign
2. Write the radicand as a product containing the perfect square; each factor should be its own square root

$$
\sqrt{48}=\sqrt{16} \cdot \sqrt{3}
$$

3. Reduce the "perfect" radical to obtain your answer.

$$
\sqrt{48}=4 \sqrt{3}
$$

$>$ Method 2

1. Find the prime factorization.

$$
\sqrt{72}=\sqrt{2 \times 2 \times 2 \times 3 \times 3}
$$

2. When working $w /$ squares look for pairs. (Circle these.)

$$
\sqrt{72}=\sqrt{2 \times 2 \times 2 \times 3 \times 3}
$$

3. "The Buddy System" - Only a "factor pair" can be removed from the radicand.
4. The square root of a "factor pair is the factor: $\sqrt{2 \times 2}=2$

$$
\sqrt{72}=2 \times 3 \sqrt{2}=6 \sqrt{2}
$$

$>$ What happens if I do not choose the largest perfect square to start the process?!

- For instance: If instead of choosing 16 as the largest perfect square to start this process, you choose 4 , look what happens.....

$$
\begin{gathered}
\sqrt{48}=\sqrt{4 \cdot 12} \\
\sqrt{48}=\sqrt{4 \cdot 12}=\sqrt{4} \cdot \sqrt{12}=2 \sqrt{12}
\end{gathered}
$$

Unfortunately, this answer is not in simplest form. The 12 can also be divided by the perfect square (4).

$$
2 \sqrt{12}=2 \sqrt{4 \cdot 3}=2 \sqrt{4} \cdot \sqrt{3}=2 \cdot 2 \sqrt{3}=4 \sqrt{3}
$$

© 1998-2011 http://regentsprep.org
Product
Property of
Radicals
$\sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$ Property of
Radicals

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

Examples: Simplify.

1. $\sqrt{75}$

2. $\sqrt{3} \cdot \sqrt{15}$

3. $\sqrt{\frac{81}{100}}$

4. $\frac{\sqrt{16}}{\sqrt{25}}$
5. Help the character from shoe w/the question on his math test.

อ Rules for Simplifying Radical Expressions

- There are no perfect square factors other than 1 in the radicand.
- The radicand is not a fraction.

The radicand is not a fraction.

- Try to simplify the fraction, if possible: $\frac{\sqrt{16}}{\sqrt{8}}=\sqrt{\frac{16}{8}}=\sqrt{2}$
- The denominator does not contain a radical expression.

Reading

The process of simplifying a fraction with a radical in the denominator is called rationalizing the denominator.

Multiply the numerator \& the denominator by the radical in the denominator.

$$
\frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{a} \cdot \sqrt{b}}{\sqrt{b} \cdot \sqrt{b}}=\frac{\sqrt{a b}}{\sqrt{b^{2}}}=\frac{\sqrt{a b}}{b}
$$

Examples: Simplify. If necessary, simplify by rationalizing the denominator.
5. $\frac{\sqrt{50}}{\sqrt{5}}$
6. $\sqrt{\frac{10}{3}}$
7. $\sqrt{\frac{1}{8}}$
8. $\frac{6}{\sqrt{18}}$

〕 Squaring Radicals

$$
(\sqrt{x})^{2}=x \quad(a \sqrt{b})^{2}=(a \sqrt{b}) \times(a \sqrt{b})=a^{2} \times b=a^{2} b
$$

9. $(\sqrt{5})^{2}$
10. $\frac{1}{2}(\sqrt{6})^{2}$
11. $(2 \sqrt{3})^{2}$
12. $(-3 \sqrt{6})^{2}$
