A RADICAL REVIEW

Objective: Simplify radical expressions

ð Perfect Squares & Square Roots

Perfect Squares		
4	$= 2 \times 2$	
9	$= 3 \times 3$	
16	$= 4 \times 4$	
25	$= 5 \times 5$	
36	= 6 x 6	
49	= 7 x 7	
64	= 8 x 8	
81	$= 9 \times 9$	
100	$= 10 \times 10$	

Radicals (se	quare roots)
$\sqrt{4}$	= 2
√9	= 3
$\sqrt{16}$	= 4
$\sqrt{25}$	= 5
$\sqrt{36}$	= 6
$\sqrt{49}$	= 7
√64	= 8
$\sqrt{81}$	= 9
$\sqrt{100}$	= 10

- Simplifying Radicals/Square Roots
 Method 1
 - Find the <u>largest</u> perfect square which will divide evenly into the radicand—the number under the radical sign
 - 2. Write the radicand as a product containing the perfect square; each factor should be its own square root

$\sqrt{48} = \sqrt{16} \bullet \sqrt{3}$

3. Reduce the "perfect" radical to obtain your answer.

$$\sqrt{48} = 4\sqrt{3}$$

Method 2

1. Find the prime factorization.

$$\sqrt{72} = \sqrt{2 \times 2 \times 2 \times 3 \times 3}$$

- 2. When working w/ squares look for pairs. (Circle these.) $\sqrt{72} = \sqrt{2 \times 2 \times 2 \times 3 \times 3}$
- "The Buddy System" Only a "factor pair" can be removed from the radicand.
- 4. The square root of a "factor pair is the factor: $\sqrt{2 \times 2} = 2$

$$\sqrt{72} = 2 \times 3\sqrt{2} = 6\sqrt{2}$$

- > What happens if I do not choose the largest perfect square to start the process?!
 - For instance: If instead of choosing 16 as the largest perfect square to start this process,

3.
$$\sqrt{\frac{81}{100}}$$
 4. $\frac{\sqrt{16}}{\sqrt{25}}$

5. Help the character from *Shoe* w/the question on his math test.

- **a** <u>Rules for Simplifying Radical Expressions</u>
 - There are no perfect square factors other than 1 in the radicand.
 - The radicand is not a fraction.
 - Try to simplify the fraction, if possible:

$$\frac{\sqrt{16}}{\sqrt{8}} = \sqrt{\frac{16}{8}} = \sqrt{2}$$

• The denominator does not contain a radical expression.

The process of simplifying a fraction with a radical in the denominator is called *rationalizing the denominator*. Multiply the numerator & the denominator by the radical in the denominator.

$$\frac{\sqrt{a}}{\sqrt{b}} = \frac{\sqrt{a}}{\sqrt{b}} \cdot \sqrt{b} = \frac{\sqrt{ab}}{\sqrt{b^2}} = \frac{\sqrt{ab}}{b}$$

Examples: Simplify. If necessary, simplify by rationalizing the denominator.

5.
$$\frac{\sqrt{50}}{\sqrt{5}}$$

$$6. \quad \sqrt{\frac{10}{3}}$$

7.
$$\sqrt{\frac{1}{8}}$$

$$8. \quad \frac{6}{\sqrt{18}}$$

