Algebra	UNIT 2 LINEAR RELATIONSHIPS Cornell Notes/Summary Sheet	Name: Period:
 Lesson 2.1 - Big Ideas Independent quantity Dependent quantity Rate of change Input value Output value Using function notation to solve linear equations Using intersection points to solve linear equations 	Your Notes	
 Lesson 2.2 - Big Ideas Contextual meaning of the input value, output value, rate of change, and <i>y</i>-intercept Using tables, equations, and graphs to model & solve linear situation 	<u>Your Notes</u>	
 Lesson 2.3- Big Ideas Writing & solving inequalities Representing inequalities on a number line & a coordinate plane Inequalities w/a negative rate of change 	<u>Your Notes</u>	

<u>Lesson 2.4 – Big Ideas</u>	Your Notes
Compound inequalities	
Conjunction	
• Disjunction	
• Representing compound inequalities on a number line	
• Solving compound inequalities	

Lessons 14.1 & 14.2

Real Number System: Sets of Numbers

Name/Symbol	Description	Examples
Natural numbers ℕ	{1, 2, 3, 4, 5, } These are the numbers that we use for counting.	2, 3, 5, 17
Whole numbers ₩	{0, 1, 2, 3, 4, 5, } The set of whole numbers includes 0 and the natural numbers.	0, 2, 3, 5, 17
Integers ℤ	$\{\ldots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \ldots\}$ The set of integers includes the negatives of the natural numbers and the whole numbers.	-17, -5, -3, -2, 0, 2, 3, 5, 17
Rational numbers Q	$\left\{\frac{a}{b} \mid a \text{ and } b \text{ are integers and } b \neq 0\right\}$ This means that b is not equal to zero. The set of rational numbers is the set of all numbers that can be expressed as a quotient of two integers, with the denominator not 0. Rational numbers can be expressed as terminating or repeating decimals.	$-17 = \frac{-17}{1}, -5 = \frac{-5}{1}, -3, -2,$ 0, 2, 3, 5, 17, $\frac{2}{5} = 0.4,$ $\frac{-2}{3} = -0.6666 \dots = -0.\overline{6}$
Irrational numbers	The set of irrational numbers is the set of all numbers whose decimal representations are neither terminating nor repeating. Irrational numbers cannot be expressed as a quotient of integers.	$\sqrt{2} \approx 1.414214 -\sqrt{3} \approx -1.73205 \pi \approx 3.142 -\frac{\pi}{2} \approx -1.571$

Properties of Real Numbers

- Commutative Property Changing order when adding (or multiplying), does not affect the sum (or product): a + b = b + a OR $a \times b = b \times a$
- Associative Property Changing grouping when adding (or multiplying), does not affect the sum (or product): (a + b) + c = a + (b + c) OR $(a \times b) \times c = a \times (b \times c)$
- Distributive Property Multiplication distributes over addition: a(b + c) = ab + ac
- Additive Identity: a + 0 = a
- Multiplicative Identity: $a \times 1 = a$
- Additive Inverse: a + (-a) = 0
- Multiplicative Inverse: $a \times \frac{1}{a} = 1$

Staple the Chapter 2 Summary, from your text, to this summary sheet.

REFER TO MY WEBSITE FOR ADDITIONAL RESOURCES: WWW.SCHULTZJEN.WEEBLY.COM