

PROPERTIESOEEXPONENTE		
productrule	power rule	power of a productrule
$a^{m} \cdot a^{n}=a^{m+n}$	$\left(a^{m}\right)^{n}=a^{m n}$	$(a b)^{m}=a^{m} b^{m}$
$y \cdot y^{6}=y^{1+6}=y^{7}$	$\left(x^{2}\right)^{3}=x^{2 \cdot 3}=x^{6}$	$(x y)^{4}=x^{4} y^{4}$
quotientrule	power of aquotient	
$\frac{a^{m}}{a^{n}}=a^{m-n}$	$\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$	zero exponent
$\frac{x^{5}}{x^{2}}=x^{5-2}=x^{3}$	$\left(\frac{x}{y}\right)^{5}=\frac{x^{5}}{y^{5}}$	=
negative exponents $\begin{gathered} a^{-m}=\frac{1}{a^{m}} \& \frac{1}{a^{-m}}=a^{m} \\ 2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} \end{gathered}$	Be careful w/negative exponents: $\frac{-2}{w^{-3}}=-2 w^{3}$ This negative is not effected!	This is a trick that works just for negative exponents! Let's look at these as fractions... $\frac{w^{-3}}{1}=\frac{1}{w^{3}} \text { and } \frac{1}{x^{-2}}=\frac{x^{2}}{1}$

Lesson 5.1-Big Ideas

- Simple interest function
- Rate of change \& graph of a simple interest function
- Compound interest function
- Rate of change \& graph of a compound interest function

Lesson 5.2 - Big Ideas

Your Notes

- Equations for population problems
- Increasing vs. decreasing exponential functions
- Graphs of exponential functions
- Horizontal asymptote
- x-intercept \& y-intercept
- Domain \& range

Your Notes

䟚

Lessons 5.3 \& 5.4 - Graphing Transformations

	function notation	coordinatenotaHion
VERTICAL TRANSLATIONS		
Shift up	$f(x)=b^{x}+k$	$(x, y) \rightarrow(x, y+k)$
Shift down	$f(x)=b^{x}-k$	$(x, y) \rightarrow(x, y-k)$
HORIZONIAL TRANSIATIONS		
Shift right	$f(x)=b^{x-h}$	$(x, y) \rightarrow(x+h, k)$
Shift left	$f(x)=b^{x+h}$	$(x, y) \rightarrow(x-h, k)$
REFLLCTIONS		
Horizontal - reflect over x-axis	$f(x)=-b^{x}$	$(x, y) \rightarrow(x,-1 \cdot y)$
Vertical - reflect over y-axis	$f(x)=b^{-x}$	$(x, y) \rightarrow(-1 \cdot x, y)$

Your Notes

