| Algebra 2 – Things to Remember!                                                                                                                                                                                                                                           |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Exponents:                                                                                                                                                                                                                                                                | Complex Numbers:                                                                                                                                                                                             | Logarithms Properties of Logs.                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| $r^{0} = 1$ $r^{-m} = \frac{1}{1}$                                                                                                                                                                                                                                        | $\sqrt{-1} = i \qquad \sqrt{-a} = i\sqrt{a}; a \ge 0$                                                                                                                                                        | $y = \log_b x \Leftrightarrow x = b^y \qquad \qquad \log_b b = 1 \qquad \log_b 1 = 0$                                                                                                                                                                                                                                                        |  |  |  |  |
| $x^{m} \bullet x^{n} = x^{m+n} \qquad \qquad x^{m} = x^{m}$ $x^{m} \bullet x^{n} = x^{m+n} \qquad \qquad (x^{n})^{m} = x^{n \bullet m}$ $\frac{x^{m}}{x^{n}} = x^{m-n} \qquad \qquad \left(\frac{x}{y}\right)^{n} = \frac{x^{n}}{y^{n}}$ $(xy)^{n} = x^{n} \bullet y^{n}$ | $i^{2} = -1$ $i^{14} = i^{2} = -1$ divide exponenting by 4, use remainder, solve (a + bi) conjugate (a - bi)<br>(a + bi)(a - bi) = a^{2} + b^{2}<br>$ a + bi  = \sqrt{a^{2} + b^{2}}$ absolute value=magning | $\ln x = \log_e x \text{ natural log} \qquad \log_b (m \cdot n) = \log_b m + \log_b n$ $e = 2.71828$ $\log x = \log_{10} x \text{ common log} \qquad \log_b \left(\frac{m}{n}\right) = \log_b m - \log_b n$ Change of base formula: $\log_b a = \frac{\log a}{\log b} \qquad \log_b (m^r) = r \log_b m$ Domain: $\log_b x \text{ is } x > 0$ |  |  |  |  |
| Factoring:                                                                                                                                                                                                                                                                | <b>Exponentials</b> $e^x = \exp(x)$                                                                                                                                                                          | <b>Quadratic Equations:</b> $ax^2 + bx + c = 0$ (Set = 0.)                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Look to see if there is a GCF (greatest                                                                                                                                                                                                                                   | $b^x = b^y \rightarrow x = y \ (b > 0 \text{ and } b \neq 1)$                                                                                                                                                | Solve by factoring, completing the square, quadratic formula.                                                                                                                                                                                                                                                                                |  |  |  |  |
| common factor) IIISL $ab + ac = a(b + c)$                                                                                                                                                                                                                                 | If the bases are the same, set the                                                                                                                                                                           | $b^2 - 4ac > 0$ two real unequal roots                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| $x^2 - a^2 = (x - a)(x + a)$                                                                                                                                                                                                                                              | exponents equal and solve.                                                                                                                                                                                   | $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$ $b^2 - 4ac = 0$ repeated real roots                                                                                                                                                                                                                                                                  |  |  |  |  |
| $(x+a)^2 = x^2 + 2ax + a^2$                                                                                                                                                                                                                                               | Solving our operation equations                                                                                                                                                                              | $b^2 - 4ac < 0$ two complex roots                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| $(x-a)^2 = x^2 - 2ax + a^2$                                                                                                                                                                                                                                               | 1 Isolate exponential expression                                                                                                                                                                             | Square root property: If $x^2 = m$ then $x = \pm \sqrt{m}$                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Factor by Grouping:                                                                                                                                                                                                                                                       | 2. Take <i>log</i> or <i>ln</i> of both sides.                                                                                                                                                               | <b>Completing the square:</b> $x^2 - 2x - 5 = 0$<br>1. If other than one, divide by coefficient of $x^2$                                                                                                                                                                                                                                     |  |  |  |  |
| 144144                                                                                                                                                                                                                                                                    | 3. Solve for the variable.                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| $x^3 + 2x^2 - 3x - 6$                                                                                                                                                                                                                                                     |                                                                                                                                                                                                              | 2. Move constant term to other side $x^2 - 2x = 5$                                                                                                                                                                                                                                                                                           |  |  |  |  |
| $(r^{3}+2r^{2})-(3r+6)$ group                                                                                                                                                                                                                                             | $\ln(x)$ and $e^x$ are inverse functions                                                                                                                                                                     | 3. Take half of coefficient of x, square it, add to both sides $\frac{2}{3} = 2 + \frac{1}{3} = 5 + \frac{1}{3}$                                                                                                                                                                                                                             |  |  |  |  |
| (x + 2x) ( $(x + 0)$ group                                                                                                                                                                                                                                                | $\ln e^x = x \qquad e^{\ln x} = x$                                                                                                                                                                           | $x^{-} - 2x + [\mathbf{I}] = 5 + [\mathbf{I}]$                                                                                                                                                                                                                                                                                               |  |  |  |  |
| x(x+2) = 5(x+2) factor each                                                                                                                                                                                                                                               | $\ln e = 1 \qquad e^{\ln 4} = 4$                                                                                                                                                                             | 4. Factor perfect square on left side. $(x-1) = 6$<br>5. Use square root property to solve and get two answers. $x = 1 \pm \sqrt{6}$                                                                                                                                                                                                         |  |  |  |  |
| $(x^{2}-3)(x+2)$ factor                                                                                                                                                                                                                                                   | $e^{2\ln 3} = e^{\ln 3^2} = 9$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| <b>Variation:</b> always involves the constant of proportionality, <i>k</i> . Find <i>k</i> , and then proceed.                                                                                                                                                           | <b>Absolute Value:</b> $ a  > 0$                                                                                                                                                                             | <b>Sum of roots</b> : $r_1 + r_2 = -\frac{b}{a}$ <b>Product of roots</b> : $r_1 \cdot r_2 = \frac{b}{a}$                                                                                                                                                                                                                                     |  |  |  |  |
| <b>Direct variation:</b> $y = kx$                                                                                                                                                                                                                                         | $ a  = \begin{cases} a; & a \ge 0 \end{cases}$                                                                                                                                                               | <b>Inequalities:</b> $x^2 + x - 12 \le 0$ Change to =, factor, locate                                                                                                                                                                                                                                                                        |  |  |  |  |
| Inverse variation: $y = k$                                                                                                                                                                                                                                                | $\left  -a; a < 0 \right $                                                                                                                                                                                   | critical points on number line, check each section.                                                                                                                                                                                                                                                                                          |  |  |  |  |
| $\begin{bmatrix} 111 \\ x \end{bmatrix}$                                                                                                                                                                                                                                  | $ m  = b \implies m = -b \text{ or } m = b$                                                                                                                                                                  | (x+4)(x-3) = 0                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Varies jointly: $y = kxj$                                                                                                                                                                                                                                                 | $ m  < b \implies -b < m < b$                                                                                                                                                                                | x = -4; x = 5                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Combo: Sales vary directly $v = \frac{ka}{k}$                                                                                                                                                                                                                             | $ m  > h \rightarrow m > h \text{ or } m < -h$                                                                                                                                                               | false true false                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| with advertising and inversely <i>c c</i>                                                                                                                                                                                                                                 |                                                                                                                                                                                                              | <b>ANSWER:</b> $-4 \leq x \leq 3$ or $[-4, 3]$ (in interval notation)                                                                                                                                                                                                                                                                        |  |  |  |  |

All Rights Reserved: http://regentsprep.org

| <b>Radicals:</b> Remember to use fractional exponents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Working with Rationals (Fractions):                                                  |                                                                                                                                                                               | Solving Rational Equations:                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $a \int \frac{1}{a} \frac{m}{m} n \int \frac{m}{m} (n \int)^m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Simplify:                                                                            |                                                                                                                                                                               | Get rid of the denominators by mult. all terms by                                                                                                                                           |
| $\sqrt[n]{x} = x^{a} \qquad \qquad x^{n} = \sqrt[n]{x^{m}} = \left(\sqrt[n]{x}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | remember to look for a factoring                                                     | g of -1:                                                                                                                                                                      | common denominator.                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3x-1 - 1(-3x+1) - 1                                                                  |                                                                                                                                                                               | $\frac{22}{-3} = \frac{2}{-3}$                                                                                                                                                              |
| $\sqrt[n]{a^n} = a$ $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ $\sqrt[n]{\frac{1}{b}} = \frac{1}{\sqrt[n]{b}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{1-3x}{1-3x} = \frac{1-3x}{1-3x}$                                              |                                                                                                                                                                               | $2x^2 - 9x - 5$ $2x + 1$ $x - 5$                                                                                                                                                            |
| <b>Simplify</b> : look for perfect powers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Add: Get the common denomin                                                          | ator.                                                                                                                                                                         | multiply all by $2x^2 - 9x - 5$ and get                                                                                                                                                     |
| $\int \frac{1}{\sqrt{r^{12} r^{17}}} = \int \frac{r^{12} r^{16} r^{1$ | Factor first if possible:                                                            |                                                                                                                                                                               | 22-3(x-5) = 2(2x+1)                                                                                                                                                                         |
| $\sqrt{x}  y = \sqrt{x}  y  y = x  y  \sqrt{y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Multiply and Divide: Factor Fi                                                       | rst                                                                                                                                                                           | 22 - 3x + 15 = 4x + 2                                                                                                                                                                       |
| $\sqrt[3]{72x^9y^8z^3} = \sqrt[3]{8 \cdot 9x^8xy^8z^3} = 2x^2y^2z\sqrt[3]{9x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rational Inequalities                                                                |                                                                                                                                                                               | 37 - 3r = 4r + 2                                                                                                                                                                            |
| Use conjugates to rationalize denominators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $x^2 - 3x - 15$                                                                      |                                                                                                                                                                               | 37 - 3x = 1x + 2<br>35 - 7x                                                                                                                                                                 |
| $5 2-\sqrt{3} - 10-5\sqrt{3} - 10-5\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{x-2}{x-2} \ge 0$ The critical value                                           | ues                                                                                                                                                                           | 55 = 7x                                                                                                                                                                                     |
| $\frac{1}{2+\sqrt{3}} \cdot \frac{1}{2-\sqrt{3}} = \frac{1}{4-2\sqrt{3}+2\sqrt{3}-\sqrt{9}} = 10-3\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | from factoring the numerator are                                                     | e -3, 5.                                                                                                                                                                      | 5 = x                                                                                                                                                                                       |
| <b>Equations:</b> isolate the radical; square both sides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The denominator is zero at $x = 2$ .                                                 |                                                                                                                                                                               | Great! But the only problem is that $y = 5$ does not CHECKIIII. There is no solution                                                                                                        |
| to eliminate radical; combine; solve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Place on number line, and test s                                                     | ections.                                                                                                                                                                      | x = 5 does not CHECK!!!! There is no solution.                                                                                                                                              |
| $2x - 5\sqrt{x} - 3 = 0 \rightarrow (2x - 3)^2 = (5\sqrt{x})^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • • • • • • • • • • • • • • • • • • •                                                | <b>→</b> →                                                                                                                                                                    | Motto: Always CHECK ANSWERS.                                                                                                                                                                |
| $4r^2 - 12r + 9 - 25r \rightarrow solve \cdot r - 9 \cdot r - 1/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3 0 2 5                                                                             | 1                                                                                                                                                                             |                                                                                                                                                                                             |
| $\frac{1}{2}x + y = 25x + y = 50000 + x = 9, x = 17 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 100000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 100000 + 100000 + 100000 + 100000 + 100000 + 10000 + 10000 + 100000 + 100000 + 100000 + 100000 + 100000 + 100000 + 100000 + 100000 + 100000 + 1000000 + 1000000 + 1000000 + 100000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sequences                                                                            | <b>Equations of Circles:</b> $x^2 + y^2 = r^2$ center origin                                                                                                                  |                                                                                                                                                                                             |
| $\int dx $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arithmetic: $a_n = a_1 + (n-1)d$                                                     | $(x-h)^2$                                                                                                                                                                     | $(2^{2} + (y-k)^{2} = r^{2}$ center at $(h,k)$                                                                                                                                              |
| <b>Functions:</b> A function is a set of ordered pairs in which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $S = \frac{n(a_1 + a_n)}{n(a_1 + a_n)}$                                              | $x^2 + y^2$                                                                                                                                                                   | +Cx + Dy + E = 0 standard form                                                                                                                                                              |
| each <i>x</i> -element has only ONE <i>y</i> -element associated with it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\sum_{n}$ 2                                                                         | Compl                                                                                                                                                                         | ex Fractions:                                                                                                                                                                               |
| <b>Vertical Line Test</b> is this graph a function?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Geometric:</b> $a_n = a_1 \cdot r^{n-1}$                                          | Remen                                                                                                                                                                         | ber that the fraction bar means divide:                                                                                                                                                     |
| <b>Domain:</b> x-values used: <b>Range:</b> y-values used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $a_1(1-r^n)$                                                                         | Method                                                                                                                                                                        | 11: Get common denominator top and bottom                                                                                                                                                   |
| <b>Onto:</b> all elements in B used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $S_n = \frac{1}{1-r}$                                                                | 2 4                                                                                                                                                                           | 2-4x                                                                                                                                                                                        |
| <b>1-to-1:</b> no element in B used more than once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Recursive:</b> Example:                                                           | $\frac{1}{x^2}$                                                                                                                                                               | $x = \frac{x^2}{x^2} = \frac{2-4x}{x^2} + \frac{4x-2}{x^2} = \frac{2-4x}{x^2} + \frac{x^2}{x^2} = -1$                                                                                       |
| <b>Composition:</b> $(f \circ g)(x) = f(g(x))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $a_1 = 4;  a_n = 2a_{n-1}$                                                           | 4 2                                                                                                                                                                           | $-\frac{4x-2}{x^2}$ $x^2$ $x^2$ $x^2$ $x^2$ $4x-2$                                                                                                                                          |
| <b>Inverse functions</b> $f \& g: f(g(x)) = g(f(x)) = x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                      |                                                                                                                                                                               | · ·                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                      | $\frac{1}{x} - \frac{1}{x^2}$                                                                                                                                                 | $x^2$                                                                                                                                                                                       |
| Horizontal line test: will inverse be a function?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | $\frac{-}{x} \frac{-}{x^2}$ Method                                                                                                                                            | $x^2$<br>1 2: Mult. all terms by common denominator for                                                                                                                                     |
| Horizontal line test: will inverse be a function?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | $\begin{bmatrix} -x & -x^2 \\ x & x^2 \end{bmatrix}$ Method all.                                                                                                              | $x^2$<br>d 2: Mult. all terms by common denominator for                                                                                                                                     |
| Horizontal line test: will inverse be a function?<br>Transformations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Binomial Theorem:                                                                    | $\begin{bmatrix} -\frac{1}{x} & -\frac{1}{x^2} \\ \text{Method} \\ \text{all.} \\ \frac{2}{x^2} & -\frac{4}{x^2} \end{bmatrix}$                                               | 12: Mult. all terms by common denominator for $x^{2} \cdot \frac{2}{x^{2}} - x^{2} \cdot \frac{4}{x^{2}} = 2 - 4x$                                                                          |
| Horizontal line test: will inverse be a function?<br>Transformations:<br>-f(x) over x-axis; $f(-x)$ over y-axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Binomial Theorem:</b><br>$(a+b)^{n} = \sum_{k=1}^{n} \binom{n}{2} a^{n-k} b^{k}$  | $\begin{bmatrix} -\frac{1}{x} & -\frac{1}{x^2} \\ \text{Method} \\ \text{all.} \\ \frac{2}{x^2} - \frac{4}{x} \\ \frac{4}{x^2} & -\frac{4}{x^2} \end{bmatrix}$                | 12: Mult. all terms by common denominator for<br>$= \frac{x^2 \cdot \frac{2}{x^2} - x^2 \cdot \frac{4}{x}}{\frac{4}{x^2} - \frac{2}{x^2}} = \frac{2 - 4x}{4 - 2} = -1$                      |
| Horizontal line test: will inverse be a function?<br>Transformations:<br>-f(x) over x-axis; $f(-x)$ over y-axis<br>f(x+a) horizontal shift; $f(x)+a$ vertical shift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Binomial Theorem:</b><br>$(a+b)^{n} = \sum_{k=0}^{n} {n \choose k} a^{n-k} b^{k}$ | $\frac{\overline{x}}{x} \frac{\overline{x}^{2}}{x^{2}}$ Method<br>all.<br>$\frac{2}{\frac{x^{2}}{x}} - \frac{4}{\frac{x}{x}}$ $\frac{4}{\frac{2}{x}} - \frac{2}{\frac{2}{x}}$ | 12: Mult. all terms by common denominator for<br>$= \frac{x^2 \cdot \frac{2}{x^2} - x^2 \cdot \frac{4}{x}}{x^2 \cdot \frac{4}{x^2} - x^2 \cdot \frac{2}{x^2}} = \frac{2 - 4x}{4x - 2} = -1$ |



## Statistics and Probability -Things to Remember! Statistics: $mean = \overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$ *median* = middle number in ordered data *mode* = value occurring most often *range* = difference between largest and smallest mean absolute deviation (MAD): population MAD = $\frac{1}{n} \sum_{i=1}^{n} |x_i - \overline{x}|$ variance: population variance = $(\sigma x)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$ standard deviation: *population* standard deviation =

 $\sigma x = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}$ 

Sx = sample standard deviation  $\sigma_x$  = population standard deviation



**Binomial Probability**   ${}_{n}C_{r} \bullet p^{r} \bullet q^{n-r}$  "**exactly**" *r* times or  $\binom{n}{r} \bullet p^{r} \bullet (1-p)^{n-r}$ [TI Calculator: binompdf(*n*, *p*, *r*)]

When computing "**at least**" and "**at most**" probabilities, it is necessary to consider, in addition to the given probability,

• all probabilities larger than the given probability (**"at least**") [TI Calculator: 1 – binomcdf(*n*, *p*, *r*-1)]

• all probabilities smaller than the given probability ("**at most**") [TI Calculator: binomcdf(*n*, *p*, *r*)]

## **Probability Permutation:** without replacement and order matters

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

**Combination:** without replacement and order does not matter

$$_{n}C_{r} = \binom{n}{r} = \frac{nP_{r}}{r!} = \frac{n!}{r!(n-r)!}$$

## **Empirical Probability** $P(E) = \frac{\text{\# of times event } E \text{ occurs}}{\text{total \# of observed occurrences}}$

## **Theoretical Probability** $P(E) = \frac{n(E)}{n(S)} = \frac{\text{\# of outcomes in } E}{\text{total \# of outcomes in } S}$

$$P(A \text{ and } B) = P(A) \bullet P(B)$$
  
for independent events  
$$P(A \text{ and } B) = P(A) \bullet P(B|A)$$
  
for dependent events

$$P(A') = 1 - P(A)$$

P(A or B) = P(A) + P(B) - P(A and B)for not mutually exclusive

$$P(A \text{ or } B) = P(A) + P(B)$$
  
for mutually exclusive

 $P(B | A) = \frac{P(A \text{ and } B)}{P(A)}$  (conditional)