Exponents:

$x^{0}=1$
$x^{m} \cdot x^{n}=x^{m+n}$
$\frac{x^{m}}{x^{n}}=x^{m-n}$
$(x y)^{n}=x^{n} \cdot y^{n}$

Complex Numbers:

$\sqrt{-1}=i$
$i^{2}=-1 \quad i^{14}=i^{2}=-1$ divide exponent by 4 , use remainder, solve.
($a+b i$) conjugate ($a-b i$)
$(a+b i)(a-b i)=a^{2}+b^{2}$
$|a+b i|=\sqrt{a^{2}+b^{2}}$ absolute value=magnitude

Logarithms

$y=\log _{b} x \Leftrightarrow x=b^{y}$
$\ln x=\log _{e} x \quad$ natural \log $e=2.71828 \ldots$
$\log x=\log _{10} x$ common \log
Change of base formula:
$\log _{b} a=\frac{\log a}{\log b}$

Properties of Logs:

$\log _{b} b=1 \quad \log _{b} 1=0$
$\log _{b}(m \bullet n)=\log _{b} m+\log _{b} n$
$\log _{b}\left(\frac{m}{n}\right)=\log _{b} m-\log _{b} n$
$\log _{b}\left(m^{r}\right)=r \log _{b} m$
Domain: $\log _{b} x$ is $x>0$

Factoring:

Look to see if there is a GCF (greatest common factor) first. $a b+a c=a(b+c)$
$x^{2}-a^{2}=(x-a)(x+a)$
$(x+a)^{2}=x^{2}+2 a x+a^{2}$
$(x-a)^{2}=x^{2}-2 a x+a^{2}$

Factor by Grouping:

$$
\begin{aligned}
& x^{3}+2 x^{2}-3 x-6 \\
& \left(x^{3}+2 x^{2}\right)-(3 x+6) \text { group } \\
& x^{2}(x+2)-3(x+2) \text { factor each } \\
& \left(x^{2}-3\right)(x+2) \text { factor }
\end{aligned}
$$

Variation: always involves the constant of proportionality, k. Find k, and then proceed.
Direct variation: $y=k x$
Inverse variation: $y=\frac{k}{x}$
Varies jointly: $y=k x j$
Combo: Sales vary directly
with advertising and inversely with candy cost.

Exponentials $e^{x}=\exp (x)$

$b^{x}=b^{y} \rightarrow x=y \quad(b>0$ and $b \neq 1)$
If the bases are the same, set the exponents equal and solve.

Solving exponential equations:

1. Isolate exponential expression.
2. Take \log or \ln of both sides.
3. Solve for the variable.
$\ln (x)$ and e^{x} are inverse functions
$\ln e^{x}=x \quad e^{\ln x}=x$
$\ln e=1 \quad e^{\ln 4}=4$
$e^{2 \ln 3}=e^{\ln 3^{2}}=9$
Absolute Value: $|a|>0$
$|a|=\left\{\begin{array}{cc}a ; & a \geq 0 \\ -a ; & a<0\end{array}\right.$
$|m|=b \Rightarrow m=-b$ or $m=b$
$|m|<b \Rightarrow-b<m<b$
$|m|>b \Rightarrow m>b$ or $m<-b$

Quadratic Equations: $\quad a x^{2}+b x+c=0 \quad(S e t=0$.
Solve by factoring, completing the square, quadratic formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \begin{aligned}
& b^{2}-4 a c>0 \text { two real unequal roo } \\
& b^{2}-4 a c=0 \text { repeated real roots } \\
& b^{2}-4 a c<0 \text { two complex roots }
\end{aligned}
$$

Square root property: If $x^{2}=m$, then $x= \pm \sqrt{m}$
Completing the square: $x^{2}-2 x-5=0$

1. If other than one, divide by coefficient of x^{2}
2. Move constant term to other side $x^{2}-2 x=5$
3. Take half of coefficient of x, square it, add to both sides

$$
x^{2}-2 x+1=5+1
$$

4. Factor perfect square on left side. $\quad(x-1)^{2}=6$
5. Use square root property to solve and get two answers. $x=1 \pm \sqrt{6}$

Sum of roots: $r_{1}+r_{2}=-\frac{b}{a}$ Product of roots: $r_{1} \bullet r_{2}=\frac{c}{a}$
Inequalities: $x^{2}+x-12 \leq 0$ Change to $=$, factor, locate critical points on number line, check each section.

Radicals: Remember to use fractional exponents.

$$
\left.\begin{array}{rlrl}
\sqrt[a]{x} & =x^{\frac{1}{a}} & x^{\frac{m}{n}} & =\sqrt[n]{x^{m}}
\end{array}=(\sqrt[n]{x})^{m}\right)
$$

Simplify: look for perfect powers.
$\sqrt{x^{12} y^{17}}=\sqrt{x^{12} y^{16} y}=x^{6} y^{8} \sqrt{y}$
$\sqrt[3]{72 x^{9} y^{8} z^{3}}=\sqrt[3]{8 \cdot 9 x^{8} x y^{8} z^{3}}=2 x^{2} y^{2} z \sqrt[3]{9 x}$
Use conjugates to rationalize denominators:
$\frac{5}{2+\sqrt{3}} \cdot \frac{2-\sqrt{3}}{2-\sqrt{3}}=\frac{10-5 \sqrt{3}}{4-2 \sqrt{3}+2 \sqrt{3}-\sqrt{9}}=10-5 \sqrt{3}$
Equations: isolate the radical; square both sides to eliminate radical; combine; solve.
$2 x-5 \sqrt{x}-3=0 \rightarrow(2 x-3)^{2}=(5 \sqrt{x})^{2}$
$4 x^{2}-12 x+9=25 x \rightarrow$ solve $: x=9 ; x=1 / 4$
CHECK ANSWERS. Answer only $x=9$.
Functions: A function is a set of ordered pairs in which each x-element has only ONE y-element associated with it.

Vertical Line Test: is this graph a function?
Domain: x-values used; Range: y-values used
Onto: all elements in B used.
1-to-1: no element in B used more than once.
Composition: $(f \circ g)(x)=f(g(x))$
Inverse functions f \& $g: f(g(x))=g(f(x))=x$
Horizontal line test: will inverse be a function?

Transformations:

$-f(x)$ over x-axis; $f(-x)$ over y-axis
$f(x+a)$ horizontal shift; $f(x)+a$ vertical shift $f(a x)$ stretch horizontal; $a f(x)$ stretch vertical

Working with Rationals (Fractions):

 Simplify:remember to look for a factoring of -1 :
$\frac{3 x-1}{1-3 x}=\frac{-1(-3 x+1)}{1-3 x}=-1$
Add: Get the common denominator.

$$
\text { multiply all by } 2 x^{2}-9 x-5 \text { and get }
$$

Factor first if possible:
Multiply and Divide: Factor First

$$
22-3(x-5)=2(2 x+1)
$$

$$
22-3 x+15=4 x+2
$$

Rational Inequalities

$$
37-3 x=4 x+2
$$

$\frac{x^{2}-3 x-15}{x-2} \geq 0$ The critical values

$$
35=7 x
$$

from factoring the numerator are $-3,5$. The denominator is zero at $x=2$.
Place on number line, and test sections.

Solving Rational Equations:

Get rid of the denominators by mult. all terms by common denominator.

$$
\frac{22}{2 x^{2}-9 x-5}-\frac{3}{2 x+1}=\frac{2}{x-5}
$$

$$
5=x
$$

Great! But the only problem is that $x=5$ does not CHECK!!!! There is no solution. Extraneous root.
Motto: Always CHECK ANSWERS.

Sequences
Arithmetic: $a_{n}=a_{1}+(n-1) d$

$$
S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2}
$$

Geometric: $a_{n}=a_{1} \bullet r^{n-1}$

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Recursive: Example:
$a_{1}=4 ; \quad a_{n}=2 a_{n-1}$

Binomial Theorem:

$(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}$

Equations of Circles: $x^{2}+y^{2}=r^{2}$ center origin
$(x-h)^{2}+(y-k)^{2}=r^{2}$ center at (h, k)
$x^{2}+y^{2}+C x+D y+E=0$ standard form

Complex Fractions:

Remember that the fraction bar means divide:
Method 1: Get common denominator top and bottom
$\frac{\frac{2}{x^{2}}-\frac{4}{x}}{\frac{4}{x}-\frac{2}{x^{2}}}=\frac{\frac{2-4 x}{x^{2}}}{\frac{4 x-2}{x^{2}}}=\frac{2-4 x}{x^{2}} \div \frac{4 x-2}{x^{2}}=\frac{2-4 x}{x^{2}} \cdot \frac{x^{\not 又}}{4 x-2}=-1$
Method 2: Mult. all terms by common denominator for all.
$\frac{\frac{2}{x^{2}}-\frac{4}{x}}{\frac{4}{x}-\frac{2}{x^{2}}}=\frac{x^{2} \cdot \frac{2}{x^{2}}-x^{2} \cdot \frac{4}{x}}{x^{2} \cdot \frac{4}{x}-x^{2} \cdot \frac{2}{x^{2}}}=\frac{2-4 x}{4 x-2}=-1$

All Rights Reserved: http://regentsprep.org

Statistics and Probability Things to Remember!

Statistics:

mean $=\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
median = middle number in ordered data
mode $=$ value occurring most often
range $=$ difference between largest and smallest
mean absolute deviation (MAD):
population MAD $=\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-\bar{x}\right|$

variance:

population variance $=(\sigma x)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$

standard deviation:

population standard deviation $=$
$\sigma x=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$
$S x=$ sample standard deviation
$\sigma_{x}=$ population standard deviation

Normal Distribution and Standard Deviation

Binomial Probability

${ }_{n} C_{r} \cdot p^{r} \cdot q^{n-r}$ "exactly" r times
or $\binom{n}{r} \cdot p^{r} \cdot(1-p)^{n-r}$
[TI Calculator: $\operatorname{binompdf}(n, p, r)$]
When computing "at least" and "at most" probabilities, it is necessary to consider, in addition to the given probability,

- all probabilities larger than the given probability ("at least")
[TI Calculator: 1 - $\operatorname{binomcdf}(n, p, r-1)$]
- all probabilities smaller than the given probability ("at most")
[TI Calculator: $\operatorname{binomcdf}(n, p, r)]$

Probability

Permutation: without replacement and order matters

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

Combination: without replacement and order does not matter

$$
{ }_{n} C_{r}=\binom{n}{r}=\frac{{ }_{n} P_{r}}{r!}=\frac{n!}{r!(n-r)!}
$$

Empirical Probability

$P(E)=\frac{\text { \# of times event } E \text { occurs }}{\text { total \# of observed occurrences }}$

Theoretical Probability

$P(E)=\frac{n(E)}{n(S)}=\frac{\text { \# of outcomes in } E}{\text { total \# of outcomes in } S}$
$P(A$ and $B)=P(A) \cdot P(B)$
for independent events
$P(A$ and $B)=P(A) \cdot P(B \mid A)$
for dependent events
$P\left(A^{\prime}\right)=1-P(A)$
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$ for not mutually exclusive
$P(A$ or $B)=P(A)+P(B)$
for mutually exclusive
$P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}$ (conditional)

