

quadratic equations \& applications	quadratic equations \& applications
Applications of Quadratic Relations	Applications of Quadratic Relations
Many applications of quadratic relations involve finding the minimum or maximum value.	Example
	A firework, launched into the air with a velocity of $58.8 \mathrm{~m} / \mathrm{s}$ from a height of 2 m , explodes at its highest point. Its height, h metres, is given by $h=-4.9 t^{2}+58.8 t+2$, where t is the time in seconds. When does the firework explode? How high is it?
For example, the maximum height of a toy rocket can be calculated by modelling its flight path with a quadratic equation and determining the location of the vertex.	
These problems are often referred to as "min/max" problems.	
Most of the time, words such as "greatest", "least", "biggest", "smallest", "optimal", etc. indicate min/max problems.	The highest point will be the vertex of its parabolic path. $h=-4.9\left(t^{2}-12 t\right)+2$
To determine the location of the vertex, either complete the square or use partial factoring.	$\begin{aligned} & h=-4.9\left(t^{2}-12 t+36-36\right)+2 \\ & h=-4.9(t-6)^{2}+178.4 \end{aligned}$
J. Garvin - Applications of Quadratic Relations Slide $3 / 11$	The vertex is at $(6,178.4)$. Therefore, the maximum height of 178.4 m occurs at 6 sec . J. Garvin - Applications of Quadratic Relations Slide 4/11

Questions?

